Organic Chemistry

Mathematical-Chemical Investigation of some Straight-Chained Monohydric Alcohols

Mikheil Gverdtsiteli, Maia Rusia, Ilia Gverdtsiteli

Iv. Javakhishvili Tbilisi State University

(Presented by Academy Member Shota Samsonya)

ABSTRACT. Mathematical-chemical investigation of some straight-chained monohydric alcohols was carried out within the scope of ANB-and quasi-ANB-matrices methods. Four correlation equations of "structure-properties" type were constructed. Two correlations are good, two – satisfactory. © 2016 Bull. Georg. Natl. Acad. Sci.

Key words: monohydric alcohols, ANB- and quasi-ANB-matrices, correlation equation

Contiguity matrices of molecular graphs and their various modifications are widely used in mathematical chemistry for investigation of molecules (chemical statics) and their transformations (chemical dynamics) and ANB- and quasi-ANB-matrices (\tilde{ANB}) fall into their type [1,2].

The diagonal elements of ANB-matrix represent atomic numbers of the chemical elements, which the molecule contains. Nondiagonal elements are the multiplicities of the chemical bonds.

For arbitrary XYV molecule, the ANB-matrix has the form:

where: Z_x , Z_y and Z_v are atomic numbers of X, Y, V chemical elements; Δ_{xy} , Δ_{xv} , Δ_{yv} are the multiplicities of $X \sim Y$, $X \sim V$, $Y \sim V$ chemical bonds.

For large molecules the calculations on the basis of ANB-matrices are rather labour-consuming, thus the modernized form of ANB-matrices – quasi-ANB-matrix (\tilde{ANB}) was elaborated. Its diagonal elements are the atomic numbers of chemical elements, which some structural fragments of the molecule contain; nondiagonal elements are the multiplicities of the chemical bonds between the structural fragments. Thus, \tilde{ANB} -matrices are constructed on the basis of molecular models.

Straight-chained monohydric alcohols were investigated within the scope of ANB- and $\,$ ANB-matrices methods. The simplest model was elaborated for these alcohols:

$$R - X$$

where
$$R = CH_{2}, C_{2}H_{5}, C_{3}H_{7}... X = OH$$
.

Corresponding ANB -matrix has the form:

In the Table the data $lg(\Delta_{ANB})$, $lg(\Delta_{A\tilde{N}B})$, T_{boil} and S_{298}^0 are represented for some straight-chained monohydric alcohols [3].

Table. lg(D_{ANB}), lg($\Delta_{\tilde{ANB}}$), T_{boil.} and $~S^0_{298}~$ for straight-chained monohydric alcohols

alcohol	$\lg(\Delta_{ m ANB})$	$\lg(\Delta_{ ilde{ANB}})$	T _{boil.} , ⁰ C	S ₂₉₈ , eu
CH ₃ OH	1.30	1.90	64.72	57.29
C ₂ H ₅ OH	1.87	2.18	78.32	67.54
C ₃ H ₇ OH	2.44	2.35	97.17	77.59
C ₄ H ₉ OH	3.01	2.47	117.7	86.90

Four correlation equations were constructed on computer:

$$T_{boil.} = 34.51. \lg (\Delta_{ANB}) + 13.77$$

$$S_{298}^0 = 16.91. \lg (\Delta_{ANB}) + 35.92$$

$$T_{boil} = 135.86. \lg (\Delta_{\tilde{ANB}}) - 217.9$$

$$S_{298}^0 = 66.76 \cdot \lg (\Delta_{\tilde{ANB}}) - 78.01$$

The correlations coefficient r is respectively equal to 0.992; 0.993; 0.982; 0.984. Thus, in accordance with Jaffe's criterion [4], the first two correlations are good, the third and fourth – satisfactory.

Thus, $\lg\left(\Delta_{ANB}\right)$ and $\lg\left(\Delta_{A\tilde{N}B}\right)$ are effective topological indexes for construction of correlation equation "structure-properties" type.

ორგანული ქიმია

ზოგიერთი ნორმალურჯაჭვიანი ერთატომიანი სპირტის მათემატიკურ-ქიმიური გამოკვლევა

მ. გვერდწითელი, მ. რუსია, ი. გვერდწითელი

ა. ჯავახიშვილის სახელობის თბილისის სახელმწიფო უნივერსიტეტი
 (წარმოდგენილია აკაღემიის წევრის შ. სამსონიას მიერ)

ჩატარებულია ზოგიერთი ნორმალურჯაჭვიანი ერთატომიანი სპირტის მათემატიკურ-ქიმიური გამოკვლევა ანპ- და კვაზი-ანპ-მატრიცების მეთოდის გამოყენებით. აგებულია "აღნაგობა-თვისებების" ტიპის ოთზი კორელაციური განტოლება. გამოთვლებმა აჩვენა, რომ პირველი ორი კორელაცია კარგია, ბოლო ორი — დამაკმაყოფილებელი.

REFERENCES

- 1. Gverdtsiteli M., Gamziani G., Gverdtsiteli I. (1996) The Contiguity Matrices of Molecular Graphs and their Modifications (Tbilisi).
- 2. Kupatadze K., Lobzhanidze T., Gverdtsiteli M. (2007) Algebraic-chemical Investigation of some Organic Molecules and their Transformations, Tbilisi.
- 3. Morrison R., Boid P. (1970) Organic Chemistry, Boston.
- 4. Gverdtsiteli M. (1982) Physical Organic Chemistry. Tbilisi (in Georgian).

Received January, 2016