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ABSTRACT. It is proved that if P  is a biparabolic subalgebra of the special linear Lie algebra ( )sl n over

the field of complex numbers and Z(P) is its center, then ( , ) ( , ( )),n nH P P H P Z P  0n ;  if P  is an

indecomposable biparabolic subalgebra, i. e. for corresponding two partitions 1 2( , ,..., )ra a a  and

1 2( , , ..., )sb b b  of n partial sums of this partitions never equal each other then ( ) 0Z P  and, consequently,,

( , ) 0, 0 nH P P n . Analogous results, for Borel and parabolic subalgebras of semisimple Lie algebras
respectively, were obtained by G. Leger, E. Luks [1972] and A. Tolpygo [1972]. © 2016 Bull. Georg. Natl.
Acad. Sci.
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Biparabolic Lie subalgebras [1] (initially named “seaweed algebras”) constitute a relatively new object in
Lie theory; they generalize the notion of a parabolic subalgebra [2]. There are many articles about cohomologies
of parabolic subalgebras and some of their subalgebras, e.g. nilpotent, Heisenberg subalgebras [3-6],
but cohomologies of biparabolic subalgebras are not investigated yet. In this paper we investigate regular
cohomologies of biparabolic subalgebras of the simple Lie algebras ( )sl n .

In 1972 Leger and Luks proved that cohomologies of a Borel subalgebra with coefficients in itself (i.e.
regular cohomologies) are equal to zero in all dimensions. In the same year Tolpygo proved that this result is
true in a more general case, for parabolic subalgebras. We prove that the foresaid result is true for biparabolic
subalgebras too, but we consider biparabolic subalgebras only of ( )sl n ; we hope, that this is true also for
biparabolic subalgebras of all semisimple Lie algebras.

A biparabolic subalgebra [1] of the special linear Lie algebra ( )sl n  over the field of complex numbers is the
intersection of two parabolic subalgebras of  ( )sl n  whose sum is ( );sl n we may represent such subalgebra
graphically as
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It is apparent, that two partitions of n exist.

1 2( , , ..., ),ra a a 1 2( , , ..., )sb b b (1)

(i.e. ,  i ia b n ia  and ib  are natural numbers) such that from 0ija  it follows that 11   t ij ta a a

if i j  and 11   t ij tb a b  if i j .

Our main results are:

Theorem 1. If P  is a biparabolic subalgebra of ( )sl n  and ( )Z P  is its center, then for all 0n

( , ) ( , ( )).n nH P P H P Z P
If partial sums of a pair of partitions never equal each other, i.e.

1 11 2 1 2... ... ,r sa a a b b b      

where 1 1, r r s s , then we call such a pair indecomposable.

Theorem 2. If the pair of partitions corresponding to the biparabolic subalgebra  P of ( )sl n is
indecomposable, then

( , ) 0.nH P P

To prove these theorems, we need to describe our main object more accurately. Let R denote the reductive
subalgebra of  P (R consists of block-diagonal submatrices of relevant shape in ( )sl n ) and let 1 2 N N N

denote the nilradical of P; there, 1N  is located above R  and,  2N  is located below R. It is clear, that

 P R N as vector spaces. The Cartan subalgebra H of P coincides with the diagonal of Pand

1 2 1 2( ) ( ) ,      sl n R N N N N M M (2)

as vector spaces; here 1N  and 2N  are conjugated by the Killing form to 1N  and 2N  respectively, , M is a

top right supplement of 1 2 P N N  in ( )sl n  and M  is conjugated by the Killing form to M .
Lemma 1.

( ), 0
( , )

0, 0.


  
i R Z P if i

H N P
if i

Sketch of proof. If we choose conjugated by Killing form bases { }iu  and { }iu  in ( )sl n  as in [4], then we

may construct a homotopy operator
1( ( ), ( )) ( ( ), ( ))ki iC sl n sl n C sl n sl n

by the formula

Fig.
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1 2 1 1 2 1( )( , , ..., ) ( , , , ..., ).  i
i i ikf g g g u f u g g g

Let us consider the chain of maps:
1( , ) ( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( , ( ));    d ki i i i iC N P C sl n sl n C sl n sl n C sl n sl n C N sl n

there,   is induced by the projection ( ) sl n N  – see (2) – and   is induced by restriction on .N As in [4]

we can prove that this map induces in dimensions 1i  injections

( ( , ) ) ( ( , ) ),i R i RZ C N P B C N P

i.e., in this case ( , ) 0iH N P . The case 0i  is proved by direct computations.

Lemma 2. If P  is indecomposable, then ( ) 0.Z P
Lemma 2 is proved by induction with respect to the sum r s  (see [1]).

Let us now prove theorem 1. Since R P N , we can construct a spectral sequence

,
2 ( , ( , )) ( , ). i j i j nE H R H N P H P V

It is well known [7] that if V is a semisimple module over a reductive Lie algebra R  then

( , ) ( , ).i i RH R V H R V

Therefore, our statement follows from Lemma 1.
As for Theorem 2, it follows from Theorem 1 and Lemma 2.
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naSromSi damtkicebulia, rom Tu P aris kompleqsur ricxvTa velze gansazRvruli
specialuri wrfivi ( )sl n lis algebris biparaboluri qvealgebra da ( )Z P aris misi centri,

maSin ( , ) ( , ( )),n nH P P H P Z P 0.n  Tu u P  aris dauSladi biparaboluri qvealgebra, e.i.
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n -is Sesabamisi 1 2( , , ..., )ra a a da 1 2( , , ..., )sb b b daSlebisTvis nawilobrivi jamebi arasodes

aris erTmaneTis toli, maSin ( ) 0Z P  . am pirobebSi P -s regularuli kohomologiebi

udris nuls: ( , ) 0,nH P P  0.n 
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