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ABSTRACT. Itis proved thatif P is a biparabolic subalgebra of the special linear Lie algebra s/(n) over

the field of complex numbers and Z(P) is its center, then H"(P,P)=H"(P,Z(P)), n=0; if P is an
indecomposable biparabolic subalgebra, i. e. for corresponding two partitions (a;,a,,...,a,) and

(b, b,,....,b,) of npartial sums of this partitions never equal each other then Z(P) =0 and, consequently,

H"(P,P)=0, n=>0.Analogous results, for Borel and parabolic subalgebras of semisimple Lie algebras

respectively, were obtained by G. Leger, E. Luks [1972] and A. Tolpygo [1972]. © 2016 Bull. Georg. Natl.
Acad. Sci.
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Biparabolic Lie subalgebras [1] (initially named “seaweed algebras”) constitute a relatively new object in
Lie theory; they generalize the notion of a parabolic subalgebra [2]. There are many articles about cohomologies
of parabolic subalgebras and some of their subalgebras, e.g. nilpotent, Heisenberg subalgebras [3-6],
but cohomologies of biparabolic subalgebras are not investigated yet. In this paper we investigate regular
cohomologies of biparabolic subalgebras of the simple Lie algebras si(n) .

In 1972 Leger and Luks proved that cohomologies of a Borel subalgebra with coefficients in itself (i.e.
regular cohomologies) are equal to zero in all dimensions. In the same year Tolpygo proved that this result is
true in a more general case, for parabolic subalgebras. We prove that the foresaid result is true for biparabolic
subalgebras too, but we consider biparabolic subalgebras only of s/(n) ; we hope, that this is true also for
biparabolic subalgebras of all semisimple Lie algebras.

A biparabolic subalgebra [1] of the special linear Lie algebra si(n) over the field of complex numbers is the
intersection of two parabolic subalgebras of s/(n) whose sum is s/(n); we may represent such subalgebra

graphically as
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rig.

It is apparent, that two partitions of n exist.
(a,a5,....a,.), (b,b,,....b,) (D
(ie. D a; =Y b, =n, a; and b; are natural numbers) such that from @; # 0 it follows that @ ,+1< a; <a,,
ifi<jand b +1<a; <b.ifiz].
Our main results are:
Theorem 1. If P is a biparabolic subalgebra of sl(n) and Z(P) is its center, then for all n>0

H"(P,P)= H"(P,Z(P)).

If partial sums of a pair of partitions never equal each other, i.e.
a +ay+..+a, #b+b, +..+b ,

where 1, <r, s <s,then we call such a pair indecomposable.

Theorem 2. If the pair of partitions corresponding to the biparabolic subalgebra P of sl(n) is

indecomposable, then
H"(P,P)=0.

To prove these theorems, we need to describe our main object more accurately. Let R denote the reductive
subalgebra of P (R consists of block-diagonal submatrices of relevant shape in s/(n) ) and let N = N, + N,
denote the nilradical of P; there, N, is located above R and, N , is located below R. It is clear, that
P = R+ N as vector spaces. The Cartan subalgebra A of P coincides with the diagonal of Pand

sl(n)=(R+N, +Ny)+N, + N, + M + M, )
as vector spaces; here VI and N_2 are conjugated by the Killing form to &, and N, respectively, M isa
top right supplement of P+ N, + N_2 in s/(n) and M is conjugated by the Killing form to M .

Lemmal.

o {10 00
Sketch of proof. If we choose conjugated by Killing form bases {;} and {'} in s/(n) as in [4], then we
may construct a homotopy operator
C' (sl(n), sl(n))—~— C"" (s(n),sl(n))
by the formula
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(KF)(81sZrremn &) = DU [ (181585000 811
Let us consider the chain of maps:

C' (N, P)—L— C' (sl(n), sl(n)) —L— C" (sl(n), sl (n)) —~— C' (si(n), sI(n)) —2— C' (N, sl(n));
there, ¥ isinduced by the projection s/(n) —> N —see (2) —and ¢ is induced by restriction on N, Asin [4]
we can prove that this map induces in dimensions ; > injections

Z(C'(N,P)Y®)— B(C'(N, P)"),
i.e., in this case H'(N,P)=0.Thecase j =( is proved by direct computations.

Lemma 2. [f p is indecomposable, then Z(P) =0.

Lemma 2 is proved by induction with respect to the sum »+s (see [1]).
Let us now prove theorem 1. Since R = P/N , we can construct a spectral sequence
EY =H'(R,H'(N,P))= H"(P,V).
It is well known [7] that if J is a semisimple module over a reductive Lie algebra R then
H (R, V)=H' (R, V).
Therefore, our statement follows from Lemma 1.
As for Theorem 2, it follows from Theorem 1 and Lemma 2.
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n-ob 3gbs8sdolo (a,,a,,....a,)@s (b,b,,...,b ) @33mgdobmgol bfjognmdtogo xsdgdo 3¢sbmegl
3690b 96H0dsbgools Bemo, 33306 Z(P)=0. 33 306039830 P -k Ggammstrgmo m3mdmenmgogdo
gretol EﬁQB: H"(P,P)=0, n>0.
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