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ABSTRACT. Instability in uniform motion flows occurs when continues waves take over dynamic
waves. In those cases primary uniform motion of the flow looses its stability and waves appear on free
surface of the flow. The issue of prediction of waves occurrence on free surface are discussed in the
paper. The calculations are made for both, cohesive debris flows (non Newtonian liquid) and water flows
(Newtonian liquid) in order to control and secure stability of ecological situation in the bed and surrounding
medium of water flow. © 2016 Bull. Georg. Natl. Acad. Sci.
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Instability in uniformly moving cohesive debris and
water flows [1,2] occurs when continuous waves
overtake dynamic waves C1. In this case primary uni-
form motion will be unstable which is realized by oc-
currence of the wave with significant amplitude on
free surface of the wave flow, i.e.,

1CVVb  (1)

where V is an average velocity on the live cross-
section at uniform motion rate.

Cohesive Debris Flows

Huge hyperconcentrated with sediments (cohesive,
structural) debris flows are mainly formed is in ero-
sion incisions, representing the whole system of beds
of upper mountain water flows which as a result of
continuous rock destructions and their motions from
the above are filled with broken mass being exposed
to the wind and crushed under the influence of dif-

ferent natural factors. As a result of the like phenom-
ena mud mass mixes with broken rock mass and fills
all the cavities. Being ready in erosion incisions de-
bris mixture is in hyperconcentrated with sediments
(cohesive) state and one of the reasons, such as
shower, intensive snow melting, the occurrence of
underground waters, will make the debris flow surge
down the slopes on grabbing on the way stone pieces,
trunks of the trees, etc., forming tremendous debris
flow with powerful destruction force [1,3].

Hyperconcentrated alluvial debris flow includes
8090% (by mass) hard material and 1020% of
water (in viscous state) Density of such mixture is
1.82.3 t/m3, moving medium presents plastic
mudstone conglomerate.

Let us consider continuous waves at the motion
of progressive flow with constant discharge on the
way. Naturally, the discharge of cohesive debris flow
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at stationary regime of the motion depends on the
depth H.

The velocity of continuous wave Vb passing
through the control section lines 11 and 22 ( Fig. 1)
can be determined from the conditions of continuity;
in this case, we have the following equality:

   ,b bQ V Q Q V       (2)
where Q is the flow discharge in the section line 11;

QQ   – flow discharge in the section line 22;  –
live cross section in the section line 11, Vb – veloc-
ity of the spread of continuous wave.

From (2) it follows [1]:
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Given that
 ,Q V (4)

then, taking into account (4) instead of (3) we have:
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From (5) it turns out that continuous wave veloc-
ity is greater, than the average velocity on the flow
cross-section by the value

Fig. 1. Scheme of calculation of debris flow continues wave with constant discharge along the way.
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Discharge of the cohesive debris flow at the uni-
form motion mode [1]:
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where ccc  /  - the kinematic viscosity of the

cohesive debris flow; c  - the dynamic viscosity of

the cohesive debris flow; c - density of cohesive

debris flow.
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where  
H
h

  is relative depth;

h - the depth of the structural part of the flow core;
 - the width of the flow;
g  - the acceleration of gravity force.

Specific values   f   can be taken from Table 1.

In the bed with rectangular cross-section the av-
erage flow velocity is

Table 1. Specific values of f()

H
h

  0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 f  0.333 0.283 0.234 0.187 0.14 0.1 0.069 0.04 0.018 0.0 
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where q is the discharge per unit width flow.
From (3) and (6) it follows:
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while solving the task without specific error we can

assume that 
  constf

c





Using (8), we obtain:
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2
 . (10)

Comparing (9) and (10) we have:

VVb 3 . (11)

Thus, it turns out that continuous wave velocity
is three times greater, than the average flow velocity
along the cross section of the flow velocity.

Since the cohesive debris flow mixture differs from
the water, has the property of the so-called “static
shift stress” [1,3], which corresponds to the shift in
start of the motion, then the “dynamic” shift stress is
a relative concept and expresses the part of the tan-
gent stress (not depending on velocity) while moving.

Due to the above, the cohesive debris mixture at
a certain depth does not move, even on sloping sur-
face, that is, does not flow down, so unlike water the

dependence of Lagrange gHC 1  [4] for non-

Newtonian liquids (including cohesive debris flow)
should be expressed as follows [1]:

11 cosgHC  (12)

where 1  is a limit value of sloping plane, in which

the debris flow mixture of certain depth and given
consistency starts to move; at the same angle of in-
clination of the bottom of the water source the debris
flow, reaching certain depth less than at the motion,
stops moving.

Therefore, the dependence (12) characterizes the
dynamic wave in the cohesive debris flow that in-
cludes the part of stress, which is necessary to over-

come, the so-called, bias resistance motion.
Substituting (9), (10), (12) into (1) and taking into

account that  ,i Sin  we obtain the necessary

condition for the instability in the form of inequality:
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Dependence (13) characterizes the condition of
the instability of one-dimensional long waves in co-
hesive debris flow with positive gradient of the bot-
tom, when traffic flow is conditioned by gravity force.

Water Flows

Erosion processes are particularly intense in moun-
tain and foothill conditions, where they often reach
catastrophic proportions, washing away several doz-
ens of tons of soil per hectare during a year [2].

During the movement of the liquid effluent shal-
low depth along the slope often the wave motion
occurs, contributing to the intensification of erosion
processes.

Waves in the watercourses and on the slopes of
landscapes carry changes of the main hydraulic and
hydrological parameters of runoff, both continuously
and in steps.

Taking into account that the width of the slope B
is usually much greater, than the depth H of the flow,
i.e.  HB  , it is possible to see the drain on flat
sloping surface of 1 m wide. This is possible because
there is only wave propagation in the direction of
translational motion of the flow. Then from (5) it fol-
lows:
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Designating flow runoff in the alignment of 1-1,
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 then (3) takes the form:
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The flow moves along the slope in uniform turbu-
lent motion regime (before the waves occur) and is

described by the Chezy formula RiCQ  , where

C - Chezy coefficient, 



R  - hydraulic radius,  -

wetted perimeter, i - the gradient of flat surface slope.
Due to the fact that the problem is considered

with flat width of 1 m, then  Chezy formula takes the

form q HC Hi  or

iCHq 5,1 . (15)

Let  .K C i const   Then (15) takes the form:
5,1KHq  . (16)

If we take into account that for uniform motion

H
qV  , then we shall have:

 0,51.5 .bV KH (17)

It should be taken into account that

5,0
5,1

KH
H

KH
H
qV  . (18)

Comparing (15) and (16) we obtain:
 1.5 ,bV V (19)

i.e., continuous wave velocity is by one and a half
time more, than the average velocity along the live
cross-section of the flow at a uniform motion regime.

Dependence (19) points to the need of taking into
account the availability of the wave-like flow traffic on
the slopes to quantify the intensity of soil erosion.

The velosity of slope runoff determines the force ac-
tion on the particles, aggregates, soil separations at their
isolation, as well as the conveying ability of solid parti-
cles of the soil flow. For prediction of the critical velocity,
at which the erosion process begins, currently a number
of methods are spread. The mostly known are [5-10].

Dynamic wave velocity 1C  can be determined by
Lagrange’s formula [4]:

 
1 .C gH (20)

Then, taking into account that continuous waves
overtake the dynamic waves, the original uniform
motion along the slope is unstable, that is realized in
the advent of waves with significant amplitude on
the free surface slope runoff i, e., (1).

Such waves can be clearly detected even on the
sloping streets during heavy rain, even in the streets
with minor deviations at small depths of runoff.

Substituting into (1) dependences (17), (18) and
(20). we can obtain criteria correlation for prediction
of waves on the free surface slope runoff with the
following inequality:

 
2 .gC

i
 (21)

According to the Academician N. N. Pavlovsky

[4], the coefficient in (the metric system) YH
n

C 1
 ,

where n is the coefficient of the slope roughness;

 1.5Y n  is index of the level at 1H . Then mini-

mal depth of slope runoff, at which the occurrence of
the waves on the free surface of the flow is possible,
will be:

 
2Y

gH n
i

 m. (22)

Continuous waves will carry the corresponding
values   of runoff depths, while each wave will propa-
gate with its velocity in accordance with (14). If at the
initial moment of the flow formation t =0 at X =0 then
from this moment the waves corresponding to all
values of H begin to spread.

The account of the occurrence the wave-like mo-
tion of slope runoff in the known classical methods
of calculation [510 etc.] has some difficulties, which
we do not consider in this paper.

Thus, the forecast of the occurrence of the waves
on the free surface slope runoff should be evaluated
on the dependences for cohesive debris flow (13)
and for the water flows (21) or (22).
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wylis da Rvarcoful nakadebSi grZeli
erTganzomilebiani talRebis gamokvleva

o. naTiSvili

akademiis wevri, saqarTvelos mecnierebaTa erovnuli akademia, Tbilisi

Tanabari siCqariT moZravi (rogorc niutonuri, aseve araniutonuri) nakadi kargavs
Tavis pirvelad (stacionarul, damyarebul) wonasworobas im SemTxvevaSi, rodesac grZeli
erTganzomilebiani uwyveti talRis siCqaris ricxviTi mniSvneloba gadaaWarbebs cocxal
kveTSi nakadis saSualo da dinamikur siCqareTa jams.

naSromSi moyvanilia saangariSo damokidebulebebi rogorc wylisaTvis (niutonuri
siTxe), aseve bmuli RvarcofisaTvis (araniutonuri siTxe) grZeli erTganzomilebiani
uwyveti talRis, cocxali kveTis saSualo da dinamikur siCqareTa saangariSo gamosa-
xulebani. dadebiTi qanobis mqone (rogorc bunebriv, aseve xelovnur) kalapotebis
SemTxvevebSi zemoT miTiTebul gamosaxulebaTa urTierTkavSiri (utolobis formiT)
saSualebas iZleva winaswar vimsjeloT arsebuli mdgradi pirobebis SesaZlo darRvevis
SesaZleblobaze (prognozze), riTac, Sesabamisi RonisZiebebis gatarebiT, Tavidan avicilebT
ekologiuri wonasworobis darRvevas an SevarbilebT mis uaryofiT zegavlenas garemoze.
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