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ABSTRACT. In thispaper, systems of nonlinear equationsisconsiderd to solve. To approximatethe
solution wear einter ested in combining both fuzzy system and itter ative methods. Elementary properties
of designed fuzzy system are given. To design a fuzzy systems we used singleton fuzzifier, and center
averagedefuzzifier. The proposed method over comesthedifficultiesthat arisingin calculating complicated
system of nonlinear equationsusing different itter ative methods. To show the accur acy of themethod, we
apply it to some examplesincluding sometypes of nonlinear systems of equations. © 2016 Bull. Georg.
Natl. Acad. <ci.

Keywords. Fuzzy systems; systems of nonlinear equations; Center average defuzzifier; Iterative methods,
Approximated solution

1. Introduction

Many problemsin various areas led to the solution of linear and nonlinear systems of equetions. Systems of
simultaneous nonlinear equations play a major role in mathematics and engineering. To solve such kind
systems many methods have been proposed such as Newton method, Halley’s method, Secant method and
Broyden method [1-6]. To obtaine the solution of obtimal control problems, such as the global control of
nonlinear diffusion equations [7, 8], and to solve optimal shape design and linear and nonlinear ODE’s and
inifinite-horizon optimal control problems[9, 10, 11], measure theory method used. And also some numerical
methods applied by researchers to solve system of nonlinear equations such as Adomian’s [12, 13]. In this
paper, we are interested in combining both fuzzy system and iterative methods such as Newton’s. Let’s
consider asystem of the nonlinear equations as the following form [14]:

fl(Xl,Xz,...,Xn) = 0,
f2(X1,X2,...,Xn) = O,

: @
fr(X, %,..., %) =0
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where f;, i=1,2,...,n are nonlinear function in U; eR", where U :minzlui . The vectoria function
F O X010 %) = L1000 X000 %)y (%4 Xor %) is @ function in U < R, by considering the

unknown vector x = [X1'X21-~~1Xn]T Eq.(1) will be F(x) =0. Up to now, vast investigations about the

solution of nonlinear equations and nonlinear systemsisdone by researchers[14, 15, 16]. The most important
application of fuzzy systems have concentrated on control problems because they can be used as open-loop
controllers or closed-loop controllers which have applications in consumer electronics and industrial proc-
esses, respectivly. For example, fuzzy washing machines, fuzzy systemsin cars, digital image stabilizer, and
etc. Fuzzy systems are systems to be precisely defined. That is the theory of fuzzy systemsitself is precise.
There aretreetypes of fuzzy systems[17, 18]: (i) purefuzzy systems, (ii) Takagi-Sugeno-Kang (TSK) fuzzy
systems, and (iii) fuzzy systems with fuzzifier and defuzzifier. Inputs and outputs in pure fuzzy systems are
fuzzy sets and it’s the main problem of this kind of systems, whereas they are real-valued variables in
engineering systems. TSK proposed fuzzy system whose inputs and outputs are real-valued variables.
However thissystem hasits disadvantages asfollows: ItsSTHEN part isamathematical formulaso may not be
able to represent human knowledge, and the versatility of fuzzy systems is not well-represented in this
structure because there is not much freedom left to apply different principlesin fuzzy logic. In order to solve
this problem, the third type of fuzzy systems with fuzzifier and difuzzifier has been introduced. This fuzzy
system overcomes mentioned disadvantages of the previous fuzzy systems.

To achieve the aim of solving nonlinear system of equetions, we design the fuzzy system f(x) fromthe
M fuzzy IF-THEN rules using product inference engine, singleton fuzzifier, and center average defuzzifier.
The structure of fuzzy systemisshownin Fig. 1. Therest of this paper is organized asfollows: In section 2,
we introduce some elementary properties of designed fuzzy system and discuss basic definitions. In Section
3 we study in detail the design of fuzzy system with singleton fuzzifier, inference engine and defuzzifier.
Approximation accuracy of fuzzy systems will be shown in this section and some examples show the effi-
ciency of the method in Section 4. Conclusionisdrawn in Section 5.

2. Preiminaries

In this section we recall some basic notations which is used in fuzzy systems. We begin with defining the
fuzzy rule.

Fuzzy Rule Base

’@@ @zziﬁcr
X in L

e e '

Fuzzy Inference

Fuzzy sets in U Fuzzy setsin ¥

Engine

Fig. 1. Basic configuration of fuzzy systems with fuzzifier and defuzzifier.

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016



The Application of Fuzzy Systems to Approximate ... 35

2.1. Fuzzy Rule
A fuzzy rule base consists of a set of fuzzy IF-THEN rules. Consider the fuzzy system where

U =U;xUyx...xU,, c R" and V < R . Thefuzzy rule base comprisesthe following fuzzy IF-THEN rules:
Ru 1 1f xisA % isAb,..., X, is A, Then yisB' @

where A' and B' are fuzzy setsin U cR and V < R, respectivly. Also x:(xl,xz,...,xr,)T eU and
y eV aretheinput and output variables of the fuzzy system, respectively.

Definition 1. A set of fuzzy IF-THEN rulesiscompleteif forany x e U , thereexistsat least oneruleinthe
fuzzy rule base, say rule Ru', such that

mﬁ| x)=0 3

foral i=1,2,...,n.

Definition 2. A set of fuzzy IF-THEN rulesis consistent if there are no rules with the same | F parts and
different THEN parts.

Definition 3. A set of fuzzy IF-THEN rules is continuous if there do not exist such neighboring rules
whose THEN part fuzzy sets have empty intersection.

Definition 4 (Pseudo-Trapezoid ). Let [a,b] — R . The Pseudo-Trapezoid membership function of fuzzy

set Aisacontinuous function in R given by

1(x), xe[a,b),
| _ H, Xe(b,C],
ma(xa,b,c,d,H) = D(x), xe(c,d], ¥

0, xeR-(ad)

2.2. Fuzzy Inference
In afuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IF-THEN rulesin the fuzzy

rule base into a mapping from a fuzzy set A’ in U to afuzzy set B’ in V. Here, the Lasens max-product
inferenceisconsidered [19].

Definition 5 (Product Inference Engine). In product inference engine, we use individual rule based infer-
ence with union combination, Mamdani’s product implication, and algebraic product for all the t-norm opera-
torsand max for all the s-norm operators. The product inference engine can be written as follows:

M n
Mg (¥) = max|sup(my (X)Hmﬁ| 04)my (Y] ©®
That is, givenfuzzy set A" inU, the product inference engine givesthefuzzy set B' inV according to (4).

2.3. Defizzification M ethod
The defuzzifier can be defined as a mapping from fuzzy set B' in V < R (whichisthe output of the fuzzy

inference engine) to crisp point y* eV . Theoutput of theinference processisafuzzy set, Generaly, center-
of-gravity method for defuzzification isused to fuzzy systems. The center of gravity defuzzifier specifiesthe
y* asthe center of the area covered by the membership function of B', that is[20, 17, 18]
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o Jyme (ndy

y = , 6
J,me (ay ©

where Iv is the conventional integral. If we view my(y) as the probability density function of a random

variable, then the center of gravity defuzzifier givesthe mean value of the random variable. Because the fuzzy
set B’ isthe union or intersection of M fuzzy sets, an acceptable approximation of Eq. (2) isthe weighted
average of the centers of M fuzzy sets, with the weights equal the heights of the corresponding fuzzy sets.

Definition 6 (Center Average Defuzzifier). Thefuzzy set B’ isthe union or intersection of M fuzzy sets.

Let 7' be the center of the I’th fuzzy set and w beits height, the center average defuzzifier determines y*
as.

M |
DV w
1=1

1
Y
1=1

y = @

Definition 7 (Singleton fuzzifier). The singleton fuzzifier maps areal-valued point X" eU into afuzzy
singleton A’ in U which has membership value 1 at X" and 0 all other pointsin U; that is,

1 if X=X
0 other wise,

My (X) ={ ©

Definition 8 (Completeness of Fuzzy Sets). Fuzzy sets AL, A%,..., AN inU e R aresaidto becomplete
onU if forany xeU , thereexists Al such that m,; (x)>0.

Definition 9 (Order Between Fuzzy Sets). For two fuzzy sets Aand Bin Wc R, wesay A>B if
hgt(A) > hgt(B) (thatis, if xe hgt(A) and X' € hgt(B), then x> x').

Lemma 1. Suppose that the fuzzy set B' isnormal with center y' , then the fuzzy systemwith fuzzy rule

base product inference engine, singleton fuzzfier, and center average defuzzfier is the following:

M n

YV Imy %)

|1=1 i=1 ﬁ
M n ©)
ZH”H (%)

l;=1i=1

k(x) =

xeU < R" istheinput to the fuzzy system, and k(x) eV — R isthe output of the fuzzy system.
Proof. See[20].

3. Design of Fuzzy System
To design a fuzzy system that have some nice properties and notational simplicity, we consider a fuzzy

systemwith ninputsas (x,...,%,) - F(X,...,X,) will bevectorial functionin U =U;x...U, eR" . Asitis
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mentioned in (2), fuzzy IF-THEN rule is interpreted as a fuzzy relation in the input-output product space
U xV asfollows:

RuUD A x..xA, >B, 1=1,2..,N.

while Al x...x A, isafuzzy relationin U defined by

mAJ_x...XAI,](Xl ..... Xn):mA{_(Xl)*"'*m,A\h(xn)' 1=1,2,..., N.

In this study we used product inference engine asit is defined in Definition 5. Finally, by center average
defuzzifier (9), we can approximate therecursive Newton’s formula which is constructed from vectorial func-

tion F(X,...,X,) . This purpose, consider
G=X-[IFX)IF(X), X =0, %)
We will design a defuzzifier like k to approximate G. Let G be a function on closed an bounded set

U =[a,by]x[as,bs]x...x[an,b,] = R" and G be unknown function. The target is design afuzzy system
to approximate G. To obtain the solution of F(x) =0 every iterative method such as Newton method, Fix

point method and etc. can be applied. In this study, an operator P transforms the function F to another
function such G.

Lemma 2 ( see [20]). If AL A2, .. AN are consistent and normal fuzzy setsin U e R with pseudo-
trapezoid membership functions mAj (%a.b,6.d) for i =1,2,...,N, then there exists a rearrangement
{1,2,...,N} of {if,ip,...,iy} suchthat

AL<A2 < < AN, (10)

Proof. For arbitrary i, j € {1,2,...,N} , itmust betruethat [§ .G ] N[bj,¢;]1 =] , sinceotherwisethefuzzy

sets AL, A2, AN would not be consistent. Thus, there existsarearrangement {iy, ip,....ix } of {1,2,...,N}
such that
b . l1<M,.6,I<...<[b .G ] (1)
whichimplies(9).
Consider the following steps:

*Define N; (i =1,2,...,n) fuzzy sets Al,AZ,.._,ANi in [a;j,b;] whicharenormal, consistent, complete

with pesudo-trapezoid membership functions mﬁl(&;a-l,hl,c.-l,dil),...,m e ;aiNi ,qu ,ciNi ,diNi) and
A

N N - P . .
Al<A?<..<A ' where e =aje=by,e =1/2(t) +¢!) for j=1,2,...,N; ~1. Similarly we have

& =a,e2=b, el =1/2(b) +cl) for j=1,2,...,N,~1and & =ap.e\" = by, &l =1/ 2(] +cl) for
j=1,2,...,N,-1.
o Let M = Ny x Nyx,...,xNp, sothefuzzy IF-THEN rule hastheform of thefollowing:
RUT2 N ¢ If ¥, is AL, %, is A2, ... x, is A". Thenyis B12""n |
where i; =1,2,...,Ny,i» =1,2,...,Ny to i, =1,2,...,N,,.
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The center of the fuzzy set B1I 'n | denoted by yl2 , ischosen as

712 = o(d, 3 12

» Construct the fuzzy system f(x) fromthe N; x Nzx,...,an rules asfollows:

||
Z Z Zyl M) M () M

i ()]
i=li,=1 i =1 A AS AT
k(x) =1 le TR : (13
[m; m;_(x i ]
|lz_:ﬂzz_:1 inZ:: o '°22( 2 %n(xn)

(seeLemmal).
In other words for every 3 points of e in [a;j,b;]. relation of membership function can be hold, so in

fuzzy sets A approximator k(x) isconstructed. To define the approximation accuracy of the fuzzy systems,
the following theorem has been defined:
Theorem 1 (see[20]). Let k be the fuzzy systemin (13) and g be the unknown function in (12). Let n=2,

if G is continuously differentiable on U =[a4,b;]x[a5,b,] then

99

+
hl 6X2

[o'e}

_ 99
Jo-i, <22

hy (14)

o0

where

h = max Iq”l—e,jl for i=1,2.
<Ny

Proof. See[20].
From (13) and the definition of K for i =1,2 we conclude that more accurate approximation can be

obtained by defining more fuzzy setsfor each x;
Lemma 3. Let k(x) be the fuzzy system (13) and eill,eiZZ be the points defined in the design procedure for
k(x) then,
iy i
f(el.e?)=g(et.e?) (19
for il :1,2,..., Nl,iz :1,2,..., N2.
Theorem 2. Let G be a function that is drived from Newton’s methodwhich applied for F function in

UcR" and K be the fuzzy system in (13). If G is continuously differentiable on

U =[a,by]x[ap,by]x...x[an,b,] where G =[g;,0s,....9,]" and K =[Kkg,Ko,....k,]" . Then,

||9n_'ﬂ1||oo for n=12,...,n (16)

where

h=Lm?\lx le-el| for i=1,2,...,n
=J=Ni_g
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Proof. Itisstraightforward from Theorem 1.
Corollary 1. Asaresult of Theorem 2, to obtaine sufficient accuracy by approximator function K. It is
sufficient that the vector H satisfies in the following inequality system (17):

JH <V
{H >0 1)

_ 1%
where H =[R], J ‘H‘EH 1 and v :[el,ez,...,en]T for i,n =1,2,...,n,and e isrequired accuracy.

We assert the feasible region is non-empty for the above system (17).

Lemma 4. For atolerance vector v = (el,ez,.,,,en)T the set of all possible vectorsH, i. e.

A={He]R”: H sv,H>o} (18)
iS nonempty.
Proof. Let €yin = minn=12...n{€ } ad M=maxn =12, nli.Let

~ 1 T
H=—[€emnn, ..,Em ,
mn[ min mm]

then we show that H isafeasible point. we have for vth row of JH:

n . n . n
(JH )n = Z‘]m (H)| = eg: Z‘]ni Seg_lr:zm: €min =&
i=1 i=1

i=1

so H e A. Therefore, the feasible region is not empty.
Consider the system JH =V , we approach to obtain the solution of this system such as H' which

H’>0, then we put H=H’ andtake H' asan acceptable piont, otherwise if there is no solution or the
system has asolution in which for somei, h <0. If H be choosen from feasibleregionit isvalid for every

0<H<H.
For n=2 we have the following system of inequalities:

o 091

+||=2L <e
aXl - hl 6X2 - h2 1
G2l py +[Y2| 1, <e,
hy,h >0

Fig. 2 (a), shows the acceptable point H =H' which H’ is the solution of the systemand H'>0.
Otherwise, we have for some h <0, i =1,2. With respect to the inequalities in system (19), by defining

feasible area every point in feasible region can be chosen as acceptable H . That is shown in Fig. 2 (b).
4. Examples.
Example4.1. Consider thefollowing nonlinear system:

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016
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X3 X1

Fig. 2. Illusteraion for the solution; (a) when H'>0, (b) some h <O.

X +2% =3
2x12+x2 =5

with the solution (X, y) = (1.488033871712585,0.7559830641437075) . Let f;(x,X%y) =X +2X%, —3 and

fo(%, %) = 2X12+X§—5. Then the vectorial function by unknown vector X =[x,%] would be

F(X) =[f(X), f2(X)] . From recursive Newton fuormulation we have

Xn = Xn g ~[FOOIHF(X) (20)
By designing afuzzy system, we would approximate Equation (20) on U =[1.3,1.7]x[0.5,0.9] . Suit-
able H corresponding to each intervalsis obtained from Theorem 2. Herewe have hy = 0.01 and h, = 0.04

witharequired accuracy e = 0.1. Thereare41 and 11 fuzzy sets Aj on U =[1.3,1.7]x[0.5,0.9] respevtively,

where i =1,2 and j =1,2,...,N;. The fuzzy system is constructed from 451 rules. The final fuzzy system

that approximates the function F, is derived from above system of nonlinear equation (13) as the following
form;

Ny N,
yi2[m; (m; (x)]
i12=11122=:1 A A
N Np

> ij[mp;_l (Xl)mAi22 (%2)]

iy =liy=1

k(x) =

i
where N; =41 and N, =11. Since m/ﬁi (%)= mﬁi (X|;qJI ,e|1' ,qj'+ ) for | =1,2. Theaccuracy of kasan

approximator to g in the points of eljl =1.3+0.01(j; —1) for j; =2,...,40 and 9212 =05+0.04(j, -1) for
jo = 2,...,11, in comparison to the exact solution is shown in Fig. 3.

We have the best solution where there is the least value of error. For this example (i, j) = (18,27) with
error =5.8211e-5. ItisshowninTablel.
Example4.2. Consider thefollowing nonlinear system
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Accuracy of approximated solusion.

Jo1sd
ant-f

s

Fig. 3. Comparison of the surface generated from approximator k(x) with the exact solution in Example 1.

x2—y=—1
x—cos(p—2y)=0

with the solution (X, y) = (—1,2) . The bounded setis U =[-1.2,-0.2]x[1.8,2.2] . In this example we have
h<0 sowetake iy and h, from the feasible region such as hy =0.23 and h, = 0.09 with a required
accuracy e = 0.1. The fuzzy system is constructed from 25 rules. As it is mantioned in Example 1, for
approximator k(x) wehave N; =5 and N, = 5.Thedifference between the exact solution and approximator
k(x) isshowninFig. 4.

The least value of error for this example happensin (i, j) = (39,11) with error 1.1211e-5. Table 2,

presents some approximated solution of Example 2.
Example4.3. Consider thefollowing nonlinear system

Xry?+z2 =1
2x2+y2—4z:0

3x2—4y2+ 2 =0
whith the solution (x,y) = (0.6982886099715139,0.6285242979602138,0.3425641896895695) . The

Table 1. Approximated solutions for Example 1 for Table 2. Approximated solutions for Example 2 for

j=27. =1
i =18 i =39
j X1 X2 E J X1 X2 E
25 1.48821 0.75589 | 1.9705e—4 9 -0.99855 1.99704 3.2856e—3
26 148810 | 0.75594 | 8.4177e-5 10 -0.99918 | 1.99834 | 1.8484e-3
27 1.48808 0.75595 5.8211e—5 11 -0.99999 1.99998 1.1211e-5
28 1.48814 0.75592 1.1966e—4 12 -0.99994 1.99989 11741e-4
29 1.48827 0.75586 2.6004e—4 13 -0.99990 1.99980 2.1348e—-4
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Accuracy of approximated solution

¥ X

Fig. 4. Comparison of the surface generated from approximator k(x) with the exact solution in Example 2.

bounded set is U =[0,1] x[0,1] x[0,1] . Here we have hy =0.04, h, =0.07 and hg = 0.07 with arequired
accuracy e = 0.1.Asitismantioned beforefor approximator k(x) wehave N; =25, N, =15 and N3 =15.

The acceptable approximation of the solutionsisin (i, j,k) = (25,23,15) witherror 2.902107e-5. However
Table 3, presents approximated solution

5. Summary and conclusions

Solving nonlinear system of equetions by using approximation of fuzzy systemsis presented in this paper.
The system is been considered as afunction F(x) = 0. Problem furmolation of the itterative methods such
as Newton’s or etc. can be transformed to function G by operator P. To obtain the acceptabl e approximated
solution of nonlinear system, afuzzy system is designed as an approximator of Newton furmolation, in this
paper. To achive our purpose, we used fuzzy system with singleton fuzzifier and center average defuzzifier.
Therefore, with respect to the required accuracy, bound of the problem divided by h which is explained in

Table 3. Approximated solutions for Example 3.

k=15 k=15 j=23
j=23 j=20 i=20
i X1 E( x1) j X2 E( x2) k X3 E( x3)

18 | 0.69862 | 3.3871e—4 21 0.62870 | 1.7924e-3 13 0.34239 | 1.0e-3
19 | 0.69853 | 2.4861e—4 22 0.62880 | 2.8246e—-3 14 0.34241 1.0e-3
20 | 0.69826 | 2.0045e-5 23 0.62850 | 2.0872e—4 15 0.34256 | 1.0e-5
21 | 0.69800 | 2.8102e—-4 24 0.62820 | 3.1456e-3 16 0.34254 | 1.0e-4
22 | 0.69775 | 5.3465e—4 25 0.62792 | 5.9910e—3 17 0.34253 | 1.0e-4
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Theorem 2. Finally, desiged fuzzy system, using membership functions of fuzzy sets Al approximate G(X) ,

that is derived by Newton furmolation of F(X) with high accuracy. The effectiveness of fuzzy system was
demonstrated by computer and using matlab on some examples. Obtained results of solving problems repre-
sent the advantage of applying fuzzy system to solve nonlinear systems with comparison by itterative
methods such as shorter computation time and approximate sol utionsin good accuracy. So far, some numeri-
cal methods have been investigated by researchers [21-23] among the rest, stochastic global optimization
[24], particle swarm optimization (PSO) [25] are remarkable. Since, it’s not always possible to obtain exact
solution by numerical methods such as Newton-like gradient-based methods, aspect of the impossibility to
evaluate derivatives, optimization agorithms can be helpful. Although, these optimization based methods
like PSO or stochastic global optimization are capable to obtain solution of system of equations with high
accuracy, but, they areinevitable to apply high itteration and increase the computational complexity and also
there are highly dependent on stochastic processes and are sensitive to pbest and gbest. The method that is
studied in this paper has two outstanding advantages. First, we do not have to compute JF(X), since,
operator k would approximate Newton’s formula and second, avoiding from iteration, it causes less compu-
tational compl exity.

However, this method is so sengitive to h and because of increasing cost of the computations, it is not
suitable to apply for the systems of nonlinear equation with large scales. This paper is one of the first
attempts to approximate the solution of nonlinear system of equations by designed fuzzy system and inves-
tigation of the method to the case of different itterative furmolation left for future studies.
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