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ABSTRACT. In this paper, systems of nonlinear equations is considerd to solve. To approximate the
solution we are interested in combining both fuzzy system and itterative methods. Elementary properties
of designed fuzzy system are given. To design a fuzzy systems we used singleton fuzzifier, and center
average defuzzifier. The proposed method overcomes the difficulties that arising in calculating complicated
system of nonlinear equations using different itterative methods. To show the accuracy of the method, we
apply it to some examples including some types of nonlinear systems of equations. © 2016 Bull. Georg.
Natl. Acad. Sci.
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1. Introduction

Many problems in various areas led to the solution of linear and nonlinear systems of equetions. Systems of

simultaneous nonlinear equations play a major role in mathematics and engineering. To solve such kind

systems many methods have been proposed such as Newton method, Halley’s method, Secant method and
Broyden method [1-6]. To obtaine the solution of obtimal control problems, such as the global control of

nonlinear diffusion equations [7, 8], and to solve optimal shape design and linear and nonlinear ODE’s and
inifinite-horizon optimal control problems [9, 10, 11], measure theory method used. And also some numerical

methods applied by researchers to solve system of nonlinear equations such as Adomian’s [12, 13]. In this
paper, we are interested in combining both fuzzy system and iterative methods such as Newton’s. Let’s
consider a system of the nonlinear equations as the following form [14]:
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1 2

( , , , ) = 0,

( , , , ) = 0,

( , , , ) = 0

n

n

n n

f x x x

f x x x

f x x x














(1)



34 Shukooh Sadat Asari and Majid Amirfakhrian

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016

where ,if = 1, 2, ,i n  are nonlinear function in n
iU  , where =1= n

i iU U . The vectorial function

1 2 1 1 2 1 2( , , , ) = [ ( , , , ), , ( , , , )]Tn n n nF x x x f x x x f x x x    is a function in nU   , by considering the

unknown vector 1 2= [ , , , ]Tnx x x x  Eq.(1) will be ( ) = 0F x . Up to now, vast investigations about the

solution of nonlinear equations and nonlinear systems is done by researchers [14, 15, 16]. The most important

application of fuzzy systems have concentrated on control problems because they can be used as open-loop

controllers or closed-loop controllers which have applications in consumer electronics and industrial proc-

esses, respectivly. For example, fuzzy washing machines, fuzzy systems in cars, digital image stabilizer, and

etc. Fuzzy systems are systems to be precisely defined. That is the theory of fuzzy systems itself is precise.

There are tree types of fuzzy systems [17, 18]: (i) pure fuzzy systems, (ii) Takagi-Sugeno-Kang (TSK) fuzzy

systems, and (iii) fuzzy systems with fuzzifier and defuzzifier. Inputs and outputs in pure fuzzy systems are

fuzzy sets and it’s the main problem of this kind of systems, whereas they are real-valued variables in
engineering systems. TSK proposed fuzzy system whose inputs and outputs are real-valued variables.

However this system has its disadvantages as follows: Its THEN part is a mathematical formula so may not be

able to represent human knowledge, and the versatility of fuzzy systems is not well-represented in this

structure because there is not much freedom left to apply different principles in fuzzy logic. In order to solve

this problem, the third type of fuzzy systems with fuzzifier and difuzzifier has been introduced. This fuzzy

system overcomes mentioned disadvantages of the previous fuzzy systems.

To achieve the aim of solving nonlinear system of equetions, we design the fuzzy system ( )f x  from the

M fuzzy IF-THEN rules using product inference engine, singleton fuzzifier, and center average defuzzifier.

The structure of fuzzy system is shown in Fig. 1. The rest of this paper is organized as follows: In section 2,

we introduce some elementary properties of designed fuzzy system and discuss basic definitions. In Section

3 we study in detail the design of fuzzy system with singleton fuzzifier, inference engine and defuzzifier.

Approximation accuracy of fuzzy systems will be shown in this section and some examples show the effi-

ciency of the method in Section 4. Conclusion is drawn in Section 5.

2. Preliminaries

In this section we recall some basic notations which is used in fuzzy systems. We begin with defining the

fuzzy rule.

Fig. 1. Basic configuration of fuzzy systems with fuzzifier and defuzzifier.
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2.1. Fuzzy Rule

A fuzzy rule base consists of a set of fuzzy IF-THEN rules. Consider the fuzzy system where

1 2= n
nU U U U     and V   . The fuzzy rule base comprises the following fuzzy IF-THEN rules:

1 1 2 2: , , ,l l l l l
n nRu If x is A x is A x is A Then y is B (2)

where l
iA  and lB  are fuzzy sets in iU    and V   , respectivly. Also 1 2= ( , , , )T

nx x x x U  and

y V  are the input and output variables of the fuzzy system, respectively..

Definition 1. A set of fuzzy IF-THEN rules is complete if for any x U , there exists at least one rule in the

fuzzy rule base, say rule lRu , such that

( ) 0lAi
x  (3)

for all = 1, 2, , .i n
Definition 2. A set of fuzzy IF-THEN rules is consistent if there are no rules with the same IF parts and

different THEN parts.

Definition 3. A set of fuzzy IF-THEN rules is continuous if there do not exist such neighboring rules

whose THEN part fuzzy sets have empty intersection.

Definition 4 (Pseudo-Trapezoid ). Let [ , ]a b   . The Pseudo-Trapezoid membership function of fuzzy

set A is a continuous function in   given by

( ), [ , ),

, ( , ],
( ; , , , , ) =

( ), ( , ],

0, ( , )

A

I x x a b

H x b c
x a b c d H

D x x c d

x a d




 
 
   

(4)

2.2. Fuzzy Inference

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IF-THEN rules in the fuzzy

rule base into a mapping from a fuzzy set A  in U to a fuzzy set B  in V. Here, the Lasens max-product

inference is considered [19].

Definition 5 (Product Inference Engine). In product inference engine, we use individual rule based infer-

ence with union combination, Mamdani’s product implication, and algebraic product for all the t-norm opera-
tors and max for all the s-norm operators. The product inference engine can be written as follows:

=1 =1

( ) = [sup( ( ) ( ) ( ))]max
nM

B A l i lA Bl ii

y x x y      (5)

That is, given fuzzy set A  in U, the product inference engine gives the fuzzy set B  in V according to (4).

2.3. Defizzification Method

The defuzzifier can be defined as a mapping from fuzzy set B  in V    (which is the output of the fuzzy

inference engine) to crisp point *y V . The output of the inference process is a fuzzy set, Generally, center--

of-gravity method for defuzzification is used to fuzzy systems . The center of gravity defuzzifier specifies the

*y  as the center of the area covered by the membership function of B , that is [20, 17, 18]



36 Shukooh Sadat Asari and Majid Amirfakhrian

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016

*
( )

=
( )

BV

BV

y y dy
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










, (6)

where V  is the conventional integral. If we view ( )B y   as the probability density function of a random

variable, then the center of gravity defuzzifier gives the mean value of the random variable. Because the fuzzy

set B  is the union or intersection of M fuzzy sets, an acceptable approximation of Eq. (2) is the weighted

average of the centers of M fuzzy sets, with the weights equal the heights of the corresponding fuzzy sets.

Definition 6 (Center Average Defuzzifier). The fuzzy set B  is the union or intersection of M fuzzy sets.

Let
ly  be the center of the l’th fuzzy set and lw  be its height, the center average defuzzifier determines *y

as:

* =1

=1

=

M
l

l
l

M

l
l

y w

y

w




. (7)

Definition 7 (Singleton fuzzifier). The singleton fuzzifier maps a real-valued point *X U  into a fuzzy

singleton A  in U which has membership value 1 at *X  and 0 all other points in U; that is,

*1 =
( ) =

0 ,
A

if X X
X

other wise
 





(8)

Definition 8 (Completeness of Fuzzy Sets). Fuzzy sets 1 2, , , NA A A  in U   are said to be complete

on U if for any x U , there exists jA  such that ( ) > 0jA
x .

Definition 9 (Order Between Fuzzy Sets). For two fuzzy sets A and B in W   , we say >A B  if

( ) > ( )hgt A hgt B  (that is, if ( )x hgt A  and ( )x hgt B , then >x x ).

Lemma 1. Suppose that the fuzzy set lB  is normal with center ly , then the fuzzy system with fuzzy rule

base product inference engine, singleton fuzzifier, and center average defuzzifier is the following:

=1 =11

=1 =11

( )

( ) =

( )

nM
l

l iAil i

nM

l iAil i

y x

k x

x





 


(9)

nx U   is the input to the fuzzy system, and ( )k x V    is the output of the fuzzy system.

Proof. See [20].

3. Design of Fuzzy System

To design a fuzzy system that have some nice properties and notational simplicity, we consider a fuzzy

system with n inputs as 1( , , )nx x . 1( , , )nF x x  will be vectorial function in 1= n
nU U U   . As it is
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mentioned in (2), fuzzy IF-THEN rule is interpreted as a fuzzy relation in the input-output product space

U V  as follows:

( )
1: , = 1,2, , .l l l l

nRu A A B l N   

while 1
l l

nA A   is a fuzzy relation in U defined by

1 1
1 1

( , , ) = ( ) ( ), = 1, 2, , .l l n l l nA A A An n
x x x x l N  

 
 


  

In this study we used product inference engine as it is defined in Definition 5. Finally, by center average

defuzzifier (9), we can approximate the recursive Newton’s formula which is constructed from vectorial func-

tion 1( , , )nF x x . This purpose, consider

1
1= [ ( )] ( ), = ( , , ).nG X JF X F X X x x 

We will design a defuzzifier like k to approximate G.  Let G be a function on closed an bounded set

1 1 2 2= [ , ] [ , ] [ , ] n
n nU            and G be unknown function. The target is design a fuzzy system

to approximate G. To obtain the solution of ( ) = 0F x  every iterative method such as Newton method, Fix

point method and etc. can be applied. In this study, an operator P transforms the function F to another

function such G.

Lemma 2 ( see [20]). If 1 2, , , NA A A  are consistent and normal fuzzy sets in U   with pseudo-

trapezoid membership functions ( ; , , , )j i i i iA
x a b c d  for = 1, 2, ,i N , then there exists a rearrangement

 1,2, , N  of  1 2, , , Ni i i  such that

1 2< < < .
ii i NA A A (10)

Proof. For arbitrary  , 1,2, ,i j N  , it must be true that [ , ] [ , ] =i i j jb c b c  , since otherwise the fuzzy

sets 1 2, , , NA A A  would not be consistent. Thus, there exists a rearrangement  1 2, , , Ni i i  of  1,2, , N

such that

1 1 2 2
[ , ] < [ , ] < < [ , ]i i i i i iN N
b c b c b c (11)

which implies (9).

Consider the following steps:

• Define iN  ( = 1, 2, ,i n ) fuzzy sets 1 2, , ,
Ni

i i iA A A  in [ , ]i i   which are normal, consistent, complete

with pesudo-trapezoid membership functions 1 1 1 1
1 ( ; , , , ), , ( ; , , , )

N N N Ni i i i
i i i i i N i i i i iA iAi i

x a b c d x a b c d   and

1 2< < <
Ni

i i iA A A  where 1 1
1 1 11 1 1 1= , = , = 1/ 2( )

N j j je e e b c    for 1= 1,2, , 1j N  . Similarly we have

1 2
2 2 22 2 2 2= , = , = 1/ 2( )

N j j je e e b c    for 2= 1, 2, , 1j N   and 1 = , = , = 1/ 2( )
N j j jn

n n n n n n ne e e b c    for

= 1, 2, , 1nj N  .

•  Let 1 2= , , nM N N N   , so the fuzzy IF-THEN rule has the form of the following:

1 2 :
i i inRu


 If 1x  is 1
iA , 2x  is 2

iA , ..., nx  is n
iA . Then y is 1 2i i inB


,

where 1 1 2 2= 1,2, , , = 1,2, ,i N i N   to = 1,2, ,n ni N .
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The center of the fuzzy set 1 2i i inB


, denoted by 1 2i i iny


, is chosen as

1 21 2
1 2= ( , , , ).

i i i nn
ny g e e e

  (12)

• Construct the fuzzy system ( )f x  from the 1 2 , , nN N N    rules as follows:

1 2
1 2

( ) ( ) ( )1 1 2 2
=1 =1 =1 1 21 2

1 2

( ) ( ) ( )1 1 2 2
=1 =1 =1 1 21 2

[ ]

( ) =

[ ]

NN N n i i in
i x i x i xn nAA Ai i i nn

NN N n

i x i x i xn nAA Ai i i nn

y

k x

  

  

 

 

 

 

. (13)

(see Lemma 1).

In other words for every 3 points of ie  in [ , ]i i  , relation of membership function can be hold, so in

fuzzy sets iA  approximator ( )k x  is constructed. To define the approximation accuracy of the fuzzy systems,

the following theorem has been defined:

Theorem 1 (see [20]). Let k be the fuzzy system in (13) and g be the unknown function in (12). Let n=2,

if G is continuously differentiable on 1 1 2 2= [ , ] [ , ]U      then

1 2
1 2

g g
g k h h

x x
 

 
  

  (14)

where

1

1 1

= | | = 1,2max
j j

i i i
j Ni

h e e for i

  

 .

Proof. See [20].

From (13) and the definition of ih  for = 1, 2i  we conclude that more accurate approximation can be

obtained by defining more fuzzy sets for each ix

Lemma 3. Let k(x) be the fuzzy system (13) and 1 2
1 2,
i i

e e  be the points defined in the design procedure for

k(x) then,

1 2 1 2
1 2 1 2( , ) = ( , )
i i i i

f e e g e e (15)

for 1 1 2 2= 1,2, , , = 1,2, ,i N i N  .

Theorem 2. Let G be a function that is drived from Newton’s methodwhich applied for F function in
nU    and K be the fuzzy system in (13). If G is continuously differentiable on

1 1 2 2= [ , ] [ , ] [ , ]n nU          where 1 2= [ , , , ]TnG g g g  and 1 2= [ , , , ]TnK k k k . Then,

=1

= 1, 2, ,
n

i
ii

g
g k h for n

x


  



 

  (16)

where

1

1 1

= | | = 1,2, ,max
j j

i i i
j Ni

h e e for i n

  

 
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Proof. It is straightforward from Theorem 1.

Corollary 1. As a result of Theorem 2, to obtaine sufficient accuracy by approximator function K. It is

sufficient that the vector H satisfies in the following inequality system (17):

> 0

JH V

H





(17)

where = [ ]iH h , =
i

g
J

x




 
 
  

 and 1 2= [ , , , ]TnV     for , = 1, 2, ,i n  , and i  is required accuracy..

We assert the feasible region is non-empty for the above system (17).

Lemma 4. For a tolerance vector 1 2= ( , , , )T
nv     the set of all possible vectors H, i. e.

 = : , > 0nA H JH V H  (18)

is nonempty.

Proof. Let  =1,2, ,min = min n    and , =1,2, ,= max i n im J  . Let

min min
1

= [ , , ] ,TH
mn

  

then we show that H  is a feasible point. we have for vth row of JH:

  min min
min

=1 =1 =1

= ( ) = =
n n n

i i i
i i i

JH J H J m
mn mn  

 
     

so H A . Therefore, the feasible region is not empty..

Consider the system =JH V , we approach to obtain the solution of this system such as H   which

> 0H  , then we put ˆ =H H   and take H   as an acceptable piont, otherwise if there is no solution or the

system has a solution in which for some i, 0ih  . If Ĥ  be choosen from feasible region it is valid for every

ˆ0 < .H H
For n=2 we have the following system of inequalities:

1 1
1 2 1

1 2

2 2
1 2 2

1 2

1 2, > 0

g g
h h

x x

g g
h h

x x

h h





 

 

  
 

 
  

 
 





(19)

 Fig. 2 (a), shows the acceptable point ˆ =H H   which H   is the solution of the system and > 0H  .

Otherwise, we have for some 0, = 1,2.ih i  With respect to the inequalities in system (19), by defining

feasible area every point in feasible region can be chosen as acceptable Ĥ . That is shown in Fig. 2 (b).

4. Examples.

Example 4.1. Consider the following nonlinear system:
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1 2
2 2
1 2

2 = 3

2 = 5

x x

x x






with the solution ( , ) = (1.488033871712585,0.7559830641437075)x y . Let 1 1 2 1 2( , ) = 2 3f x x x x   and

2 2
2 1 2 1 2( , ) = 2 5f x x x x  . Then the vectorial function by unknown vector 1 2= [ , ]X x x  would be

1 2( ) = [ ( ), ( )]F X f X f X . From recursive Newton fuormulation we have

1
1= [ ( )] ( )n nX X JF X F X
  (20)

     By designing a fuzzy system, we would approximate Equation (20) on = [1.3,1.7] [0.5,0.9]U  . Suit-

able H corresponding to each intervals is obtained from Theorem 2. Here we have 1 = 0.01h  and 2 = 0.04h

with a required accuracy = 0.1 . There are 41 and 11 fuzzy sets j
iA  on = [1.3,1.7] [0.5,0.9]U   respevtively,,

where = 1, 2i  and = 1, 2, , ij N . The fuzzy system is constructed from 451 rules. The final fuzzy system

that approximates the function F, is derived from above system of nonlinear equation (13) as the following

form;

1 2
1 2

1 21 2
=1 =1 1 21 2

1 2

1 21 2
=1 =1 1 21 2

[ ( ) ( )]

( ) =

ł[ ( ) ( )]

N N
i i

i i
A Ai i

N N

i i
A Ai i

y x x

k x

x x

 

 





where 1 = 41N  and 2 = 11N . Since
1 1

( ) = ( ; , , )
j j jl l l

i l i l l l lA Al l
x x e e e 

 
 for = 1,2l . The accuracy of k as an

approximator to g in the points of 1
11 = 1.3 0.01( 1)

j
e j   for 1 = 2, ,40j   and 2

22 = 0.5 0.04( 1)
j

e j   for

2 = 2, ,11j  , in comparison to the exact solution is shown in Fig. 3.

We have the best solution where there is the least value of error. For this example ( , ) = (18,27)i j with

error = 5.8211 5e  . It is shown in Table 1 .

Example 4.2. Consider the following nonlinear system

Fig. 2. Illusteraion for the solution; (a) when > 0H  , (b) some < 0ih .
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2 = 1

cos( ) = 0
2

x y

y
x



  





with the solution ( , ) = ( 1, 2)x y  . The bounded set is = [ 1.2, 0.2] [1.8,2.2]U    . In this example we have

< 0h  so we take 1h  and 2h  from the feasible region such as 1 = 0.23h  and 2 = 0.09h  with a required

accuracy = 0.1 . The fuzzy system is constructed from 25 rules. As it is mantioned in Example 1, for

approximator ( )k x  we have 1 = 5N  and 2 = 5N .The difference between the exact solution and approximator

( )k x  is shown in Fig. 4.

The least value of error for this example happens in ( , ) = (39,11)i j  with error 51.1211 e . Table 2,

presents some approximated solution of Example 2.

Example 4.3. Consider  the following nonlinear system

2 2 2

2 2

2 2 2

= 1

2 4 = 0

3 4 = 0

x y z

x y z

x y z

  
  


 

whith the solution ( , ) = (0.6982886099715139,0.6285242979602138,0.3425641896895695)x y . The

Fig. 3. Comparison of the surface generated from approximator k(x) with the exact solution in Example 1.

Table 1. Approximated solutions for Example 1 for
j=27.

= 18i
j 1x 2x E

25 1.48821 0.75589 1.9705 4e
26 1.48810 0.75594 8.4177 5e
27 1.48808 0.75595 5.8211 5e
28 1.48814 0.75592 1.1966 4e
29 1.48827 0.75586 2.6904 4e

Table 2. Approximated solutions for Example 2 for
j=1.

= 39i
j 1x 2x E

9 -0.99855 1.99704 3.2856 3e
10 -0.99918 1.99834 1.8484 3e
11 -0.99999 1.99998 1.1211 5e
12 -0.99994 1.99989 1.1741 4e
13 -0.99990 1.99980 2.1348 4e
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bounded set is = [0,1] [0,1] [0,1]U   . Here we have 1 = 0.04h , 2 = 0.07h  and 3 = 0.07h  with a required

accuracy = 0.1 . As it is mantioned before for approximator ( )k x  we have 1 = 25N , 2 = 15N  and 3 = 15N .

The acceptable approximation of the solutions is in ( , , ) = (25,23,15)i j k  with error 2.902107 5e  . However

Table 3, presents approximated solution

5. Summary and conclusions

Solving nonlinear system of equetions by using approximation of fuzzy systems is presented in this paper.

The system is been considered as a function ( ) = 0F x . Problem furmolation of the itterative methods such

as Newton’s or etc. can be transformed to function G by operator P. To obtain the acceptable approximated

solution of nonlinear system, a fuzzy system is designed as an approximator of Newton furmolation, in this

paper. To achive our purpose, we used fuzzy system with singleton fuzzifier and center average defuzzifier.

Therefore, with respect to the required accuracy, bound of the problem divided by h which is explained in

Fig. 4. Comparison of the surface generated from approximator k(x) with the exact solution in Example 2.

Table 3. Approximated solutions for Example 3.

k=15
j=23

k=15
j=20

j=23
i=20

i x1 E( x1) j x2 E( x2) k x3 E( x3)

18 0.69862 3.3871 4e 21 0.62870 1.7924 3e 13 0.34239 1.0 3e

19 0.69853 2.4861 4e 22 0.62880 2.8246 3e 14 0.34241 1.0 3e

20 0.69826 2.0045 5e 23 0.62850 2.0872 4e 15 0.34256 1.0 5e

21 0.69800 2.8102 4e 24 0.62820 3.1456 3e 16 0.34254 1.0 4e

22 0.69775 5.3465 4e 25 0.62792 5.9910 3e 17 0.34253 1.0 4e
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Theorem 2. Finally, desiged fuzzy system, using membership functions of fuzzy sets iA  approximate ( )G x ,

that is derived by Newton furmolation of ( )F X  with high accuracy. The effectiveness of fuzzy system was

demonstrated by computer and using matlab on some examples. Obtained results of solving problems repre-

sent the advantage of applying fuzzy system to solve nonlinear systems with comparison by itterative

methods such as shorter computation time and approximate solutions in good accuracy. So far, some numeri-

cal methods have been investigated by researchers [21-23] among the rest, stochastic global optimization

[24], particle swarm optimization (PSO) [25] are remarkable. Since, it’s not always possible to obtain exact
solution by numerical methods such as Newton-like gradient-based methods, aspect of the impossibility to

evaluate derivatives, optimization algorithms can be helpful. Although, these optimization based methods

like PSO or stochastic global optimization are capable to obtain solution of system of equations with high

accuracy, but, they are inevitable to apply high itteration and increase the computational complexity and also

there are highly dependent on stochastic processes and are sensitive to pbest and gbest.The method that is

studied in this paper has two outstanding advantages. First, we do not have to compute ( )JF X , since,

operator k would approximate Newton’s formula and second, avoiding from iteration, it causes less compu-
tational complexity.

 However, this method is so sensitive to h and because of increasing cost of the computations, it is not

suitable to apply for the systems of nonlinear equation with large scales. This paper is one of the first

attempts to approximate the solution of nonlinear system of equations by designed fuzzy system and inves-

tigation of the method to the case of different itterative furmolation left for future studies.

maTematika

fazi-sistemebis gamoyeneba arawrfiv gantolebaTa
sistemis miaxloebiTi amoxsnebisTvis

S. asari* da m. amirfaxriani*

* azadis islamuri universiteti, maTematikis departamenti, centraluri Teiranis ganyofileba,
Teirani, irani

(warmodgenilia akademiis wevris v. kokilaSvilis mier)

winamdebare naSromSi ganxilulia arawrfiv gantolebaTa sistemebis amoxsna.
miaxloebiTi amoxsnisTvis CvenTvis mniSvnelovania fazi-sistemisa da iteraciuli meTodebis
gaerTianeba. warmodgenilia Seqmnili fazi-sistemis elementaruli Taviseburebani. fazi-
sistemis Sesaqmnelad Cven gamoviyeneT singltonis (erTelementiani) fazifikatori da
centris saSualo defazifikatori (defazifaieri). SemoTavazebuli meTodi Cven gvexmareba
im sirTuleebis daZlevaSi, romlebic warmoiSoba arawrfiv gantolebaTa rTuli sistemis
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gamoTvlaSi sxvadasxva iteraciuli meTodebis gamoyenebiT. aRniSnuli meTodis sisworis
TvalsaCinoebisaTvis, Cven viyenebT mas ramdenime magaliTSi arawrfiv gantolebaTa sistemis
zogierTi tipis CaTvliT.

REFERENCES:

1. Cuyt A, Van der Cruyssen P. (1983) Comput. Math. Appl. 9:139-149.
2. Gragg W, Stewart G. (1976) A stable variant of the secant method for solving nonlinear equations, SIAM J.

Numer. Anal. 13:889-903.
3. Ortega J, Rheinboldt W. (1970) Iterative Solution of Nonlinear Equations in Several Variables, Academic Press,

New York.
4. Wu X. (2007) Note on the improvement of Newton’s method for systems of nonlinear equations, Appl. Math.

Comput. 189:1476-1479.
5. M.A. Waseem M. (2009) Some iterative methods for solving a system of nonlinear equations, J. Computers and

Mathematics with Applications 57:101-106.
6. Traub J.F. (1964) Iterative Methods for the Solution of Equations, Prentice Hall, New Jersey.
7. Rubio J.E. (1993) The global control of nonlinear elliptic equations, J. Franklin Inst. 330:29-35.
8. Rubio J.E (1986) Control and Optimization; the Linear Treatment of Non-Linear Problems, Manchester

University Press, Manchester, UK.
9. Effati S, Kamyad A.V. (1998) Solution of boundary value problems for linear second order ODE’s by using

measure theory, J. Anal. 6:139-149.
10.Effati S, Kamyad A.V, Farahi M.H. (2000) A new method for solving the nonlinear second order boundary value

differential equations, Korean J. Comput. Appl. Math. 7:183-193.
11.Fakharzadeh A, Rubio J.E. (1999) Shapes and measures, Ima. J. Math. Control Informat. 16:207-220.
12.Jafari H, Daftardar-Gejji V. (2006) Revised Adomian decomposition method for solving a system of nonlinear

equations, Applied Mathematics and Computation, 175:17.
13.Mathews J, Fink K. (1999) Numerical Methods Using MATLAB, Prentice Hall.
14.Effati S, Nazemi A.R. (2005) A new method for solving a system of the nonlinear equations, Applied

Mathematics and Computation 168:877-894.
15.Ostrowski A.M. (1960) Solutions of Equations and System of Equations, Academic Press, New York.
16.Deuflhard P. (1974) A Modified Newton Method for the Solution of Ill-Conditioned Systems of Nonlinear

Equations with Application to Multiple Shooting, Numer. Math. 22:289-315.
17.Fuller R (2000) Introduction to Neuro-Fuzzy Systems, Physica-Verlag Heidelberg.
18.Lee K. M, Kwak D. H, Leekwang H. (1995) Tuning of fuzzy models by fuzzy neural networks, Fuzzy sets

and Systems 76:47-61.
19.Neta B. (1983) Numerical Methods for the Solution of Equations, Net-A-Soft, California.
20.Wang L. X. (1962) A Course in Fuzzy Systems and Control, Prentice-Hall International, Inc.
21.Frontini M, Sormani E. (2004) Third-order methods from quadrature formulae for solving systems of nonlinear

equations, Appl. Math. Comput. 149:771-782.
22.Grosan G, Abraham A. (2008)A New Approach for Solving nonlinear equations systems, Systems, man and

Cybernetics, Part A:System and Humans, IEEE Transactions on 38, 3: 698-714.
23.Sacco W. F, Henderson N. (2011) Finding all solutions of nonlinear systems using a hybrid metaheuristic with

Fuzzy Clustering Means, Applied Soft Computing 11, 8: 5424-5432.
24.Oliveira Jr, Hime A, Petraglia A. (2013) Solving nonlinear systems of functional equations with fuzzy adaptive

simulated annealing, Appl. Soft Comput. 13, 11: 4349-4357.
25.Turgut O. E, Turgut M. S, Coban M. T. (2014) Chaotic quantum behaved particle swarm optimization algorithm

for solving nonlinear system of equations, Computers & Mathematics with Applications 68, 4:508-530.

Received January, 2016


