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ABSTRACT. A modification of the Sedgewick’s balancing algorithm is developed. Unlike the
Sedgewick’s algorithm, the output of this algorithm is always a complete tree. Moreover, the method of
generalization of both algorithms on Red-Black (shortly RB) and AVL trees with insignificant changes
of node without augmenting its structure is proposed. In order to establish efficiency of the new
modification in terms of running time, the numerical experiments were conducted on ordered and Red-
Black trees of different sizes for benchmarking DSW algorithm, Sedgewick’s algorithm along with its
modification. Trees were created with the help of either ordered or random data.  According to the
results, it is clear that in case of RB- trees the proposed new algorithm is faster than the other ones. ©
2016 Bull. Georg. Natl. Acad. Sci.

Key words: binary search tree,  RB-tree, AVL-tree, BST balancing algorithm, DSW algorithm, Sedgewick’s
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1. Introduction

The issue of balancing the binary search trees is quite an old one for computer sciences. However, only two
algorithms are more common (see [1, 2]). In 1976, A. Colin Day (see [3]) proposed an algorithm that balances
the binary search tree in a linear time without using the extra memory. Note that all balancing algorithms,
discussed here, result in binary search tree with the height as minimal as possible.

Theoretically, Day’s algorithm is the fastest balancing algorithm but its variant - the DSW algorithm  is
more refined, because it  creates complete tree (see [2]) - in which every level, except possibly the last, is
completely filled, and the bottommost tree level is filled from left to right.

There is also an alternative approach proposed by Robert Sedgewick (see [1]). Even though his recursive
algorithm has the worst case time complexity logn n  and requires the node structure augmentation via

adding the subtree size, in practical applications it is more effective than DSW algorithm. The tree with nodes
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having subtree sizes as attributes are called ordered search trees or simply OST.
In general, Sedgewick’s algorithm does not result in complete tree, but in one special case it gives

complete tree and perfect tree simultaneously. The perfect tree means a binary tree in which all interior nodes
have two children and all leaves have the same depth or same level.

If the number of nodes n in a tree equals to 2 1k  , where  k = 1,2,3,..., then the height of the tree obtained

by the Sedgewick’s algorithm will be k. There exists unique tree with 2 1kn    nodes and the height k, which
is both complete and perfect tree simultaneously.

Currently, the balanced trees (Red-Black or RB Tree [4] and AVL tree [5]) are used more commonly. For
example, lots of data structures used in high-level programming languages or in computational geometry, and
the Completely Fair Scheduler used in current Linux kernels, are based on RB trees. In case of RB tree, the
height of tree h and the number of nodes n are satisfying an inequality 2lg( 1)h n  . Therefore, the balanc-

ing algorithms on RB trees are not of great importance in general. But, the situation concerning RB trees has
changed recently for the following reasons:

• The usage of greater data became necessary.
• In realistic tasks (in practice) the height of the RB tree is often very close to its theoretical upper

bound.
• Computers are not switched  in passive state immediately (e.g. hibernate) and naturally appears the

possibility to rebalance the certain structure.
• The rebalancing algorithms might be faster using multi threads. For example, typical laptops are able

to ensure 4-8 threads or even more.
Sedgewick’s algorithm has the following drawbacks: it is not applicable directly for RB Trees, it is not

known in which cases it works in a linear time, and it doesn’t result in a complete tree in general.
Our variation of the Sedgewick’s algorithm, called modified Sedgewick’s algorithm or shortly MSA, works

on RB Tree without loss of effectiveness and results in a complete tree. To use the RB tree structure more
effectively the color field might be used as subtree size. After the process of rebalancing, the tree will be
colored again and the properties of RB Tree will be restored.

The fragments of the C++ codes are used to describe the proposed algorithms. For clarity, trees are drawn
using code of github: https://github.com/mooseman/pdlinkedlist/blob/master/draw-tree.c (author - Daniel
Sleator, http://www.cs.cmu.edu/~sleator). The algorithms that we created are on github as well: https://
github.com/zgnachvi/hds/tree/randomized,  https://github.com/zgnachvi/hds.

It should be noted that the proposed and the basic (Sedgewick)  algorithms still have the several draw-
backs: it is not known in which cases it works in a linear time;  temporarily or permanently the node requires
extra field (besides data and pointers) to be used to store the subtree sizes.

We have to mention that the presented algorithm is applicable to AVL trees as well, but we have omitted
this direction, as AVL trees are used rarely and they are extremely balanced.

2. Sedgewick’s Algorithm on Ordered Search Tree

Let us describe the notations and approach used in our simple implementation of OST. Codes of algorithms
are based on the information given below.

The node has the following structure:
template<typename T>
struct Node
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{
T key;
Node* child[2];
int bf;
Node();
Node(T keyValue);

};
For a given node x, the attribute x->bf contains the number of nodes in the subtree rooted at x. In some

cases it is more convenient to use a function N(x), which coincides with x->bf,  if x is an address of any
existing node, or 0 if x is NULL.

For OST, we assume that templated class Tree<T> is created not using fictive node for leaves. If any node
does not have left or right child, the address NULL is written in the appropriate field. The attribute “root” in
tree class defines the address of root. For more simplicity suppose it is public.

On any subtree, linear ordering is defined naturally. Let r be arbitrarily given node of OST, and x be some
node of the tree rooted at r. In given subtree, the rank of x is denoted by Rank(x) and means the number of
nodes, whose keys are printed before x->key after the invoke

inorder_walk(r);
where
void inorder_walk(node* h) {

if (NULL != h) {
inorder_walk(h->child[0]);
cout << h->key << endl;
inorder_walk(h->child[1]);

}
}
is the tree traversal simplest algorithm.

In the text below, we will be considering the order of node in the sense of above-mentioned rank. More
precisely the k-th node means that its rank equals to k and the median of subtree is the node with the rank of
half of the subtree size (number of elements-nodes).  Let us describe the Sedgewick’s algorithm and MSA in
more detailed way.

The public method that balances the tree is as follows:
template<typename T>
void Tree<T>::balance() {

root = balanceR(root);
}

It calls the Sedgewick recursive algorithm (private method):
template<typename T>
Node<T>* Tree<T>::balanceR(Node<T>* h)  {

if (h == NULL || h->bf < 2) return h;
h = partR(h, h->bf / 2);
h->child[0] = balanceR(h->child[0]);
h->child[1] = balanceR(h->child[1]);
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return h;
}

Here the auxiliary algorithm (private method) that partitions a binary search tree moving the kth node to the
root is applied.
template<typename T>
Node<T>* Tree<T>::partR(Node<T>* h, T k)  {

int t = N(h->child[0]);
if (t != k) {

int dir = (t < k)?1:0;
h->child[dir] = partR(h->child[dir], k - dir*(t+1));
h = ostRotate(h, !dir);

}
return h;

}
Obviously, partR (Node<T>*  h, int k) algorithm takes time proportional to the height of the subtree

rooted at h. Since the dependences between heights of subtrees and source tree in the process of balancing
are not known, the time assessment of balancing algorithms becomes undefined.

In other words, after calling balanceR(x), the algorithm partR() will find the median node and move it
to the root using rotations. Further, it will recursively repeat the same procedure on both sides of the root.

In the process of balancing, the cascade of calls will be fulfilled by the generic function:
template<typename T>
Node<T>* Tree<T>::ostRotate(Node<T>* x, bool dir)  {

Node<T>* y = x->child[!dir];
x->child[!dir] = y->child[dir];
y->child[dir] = x;
x->bf = N(x->child[0]) + N(x->child[1]) + 1;
y->bf = N(y->child[0]) + N(y->child[1]) + 1;
return y;

}
Rotation is generic in the sense that the second argument determines the direction for the rotation:

rotate(h,1) rotates to the right and rotate(h,0) rotates to the left.

3.  Modified Sedgewick’s Algorithm on Ordered Search Tree

Formally, the following public method corresponds to MSA:
template<typename T>
void Tree<T>::balanceMod() {

root = balanceMod(root);
}

which calls recursive MSA:

template<typename T>
Node<T>* Tree<T>::balanceMod(Node<T>* h){

if (h == NULL || h->bf < 2) return h;
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int height = (int)log2(h->bf);
if (h->bf <= 3 * (int)pow(2, height - 1) - 1) {

h = partR(h, h->bf - (int)pow(2, height - 1) );
h->child[1] = balanceR(h->child[1]);
h->child[0] = balanceMod(h->child[0]);

}
else {

h = partR(h, (int)pow(2, height) - 1);
h->child[1] = balanceMod(h->child[1]);
h->child[0] = balanceR(h->child[0]);

}
return h;

}
It is the recursive algorithm, the correctness of which can be easily proved using induction.
Rotations do not change ranks of any of the nodes. Consequently, rank represents invariant for both

rotations and balancing algorithms. The proof is almost trivial, so we omit it.
As is mentioned above, Sedgewik’s algorithm moves the median node to the root using rotations. Further,

it will recursively repeat the same behavior on both sides of the root.
Unlike, MSA algorithm finds the rank of that node, which will become the new root after balancing tree as

a complete one. Then it will pass this value (rank) to algorithm partR, which will move the node correspond-
ing to the given rank to the root. Further, it will repeat the recursive behavior on both sides of the root.

Let us consider the issue of representation of  the rank of the node y, which will become the  new root after
balancing a subtree rooted at node h as a complete one, as function of attributes of h.

Both subtrees before and after balancing, have the same number of nodes  n N h . As a result, the

height of the complete tree is equal to  logh n     and  12 2h hn   . In the compete tree either right or

left subtree of the root y will be definitevely a perfect tree. The rank of the root depends on the side of the
perfect subtree.

If the left subtree of the node y is not a perfect tree, then a right subtree will be a perfect one with the height

of h-2, with the number of elements 12 1h  . And, the number of elements in a tree will satisfy the inequality:

   11 2 1 2 1h h n         i.e.    13 2 1hn    .

In this case the rank of the y is  1 12 2 1 1h hn n      , as inorder_walk algorithm will not process

the ( 12 1h  ) number of nodes in the right  subtree and the root itself.

The case when the left subtree of the node y is a perfect one is easier to handle. The rank of root is 2 1h  ,
i.e. the number of nodes in the left subtree of the root y.

Thus,

 
1 1

1

2 , 3 2 1

2 1, 3 2 1

h h

h h

n n
Rank h

n

 



     
   

In the subtree with the node h the rank of y is the same as after balancing. As a result, the rank of the future



The Modification of the Sedgewick’s Balancing Algorithm 65

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016

root can be calculated via attributes of the current root.
The following lines of MSA

int height = (int)log2(h->bf);
if (h->bf <= 3 * (int)pow(2, height - 1) - 1) {

h = partR(h, h->bf - (int)pow(2, height - 1) );
. . .
}
else {

h = partR(h, (int)pow(2, height) - 1);
. . .

}
are calculating the height of the future complete tree and the rank of the future root via attributes of the
current root h. Then the rank will be passed to algorithm partR.

The condition 13 2 1hn     determines the side, where the perfect subtree will be situated. therefore,
the recursive MSA will invoke Sedgewick’s algorithm in the direction of the perfect subtree, and again MSA
in the opposite side.

In the following table, the first OST is created inserting keys {1-9} with the given order. The second tree
is obtained from the first one using Sedgewick’s algorithm. The third tree is obtained from the first one using
MSA.  It should be noted that after the balancing process the height gets its possible minimal value.

3. Algorithms on RB-Tree

The structure of RB-tree’s node is augmented by the field  Node* p; which is used to store the address of
parent node. The field bf is now used for color.  The default constructor initializes it with value 0, meaning
“RED”. Each algorithm of RB-tree class takes into account the above-mentioned differences.

Single-byte “char” is used for the color in the RB-trees. However, if we want to expand Sedgewick’s
algorithm on RB-tree, it first should be transformed into OST. To this end, bf attribute should be of int type.
Thus, a three-byte difference represents the cost to strengthen functionality of tree class.

The following private function, which works in a linear time and transforms RB-tree into OST-tree, after
invoke writes the size of subtree rooted at parameter-node in the color field:
template<typename T>
int Tree<T>::updateSizes(Node<T>* h){

      8(9) 
       / \ 
      /   \ 
    3(7) 9(1) 
    / \ 
   /   \ 
  /     \ 
1(2)   5(4) 
  \     / \ 
 2(1)  /   \ 
     4(1) 7(2) 
           / 
         6(1) 

          5(9) 
           / \ 
          /   \ 
         /     \ 
        /       \ 
       /         \ 
     3(4)       8(4) 
     / \         / \ 
    /   \       /   \ 
  2(2) 4(1)   7(2) 9(1) 
  /           / 
1(1)        6(1) 

           6(9) 
            / \ 
           /   \ 
          /     \ 
         /       \ 
        /         \ 
      4(5)       8(3) 
      / \         / \ 
     /   \       /   \ 
   2(3) 5(1)   7(1) 9(1) 
   / \ 
  /   \ 
1(1) 3(1) 

Table 1. In the lelft- OS tree;  in the middle- tree, balanced using the Sedgewick’s algorithm; in the
right- tree,  balanced using MSA
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if (h == NULL) return 0;
int lN = updateSizes(h->child[0]);
int rN = updateSizes(h->child[1]);
h->bf = 1 + lN + rN;
return h->bf;

}
Calling this function means the change of the “mode” in the tree, from RB-Tree into OST. As a result, we

obtain opportunity of using above-mentioned balancing algorithms (attribute for parent node, inherited from
RB-tree causes some changes). After the balancing is performed, it is necessary to return to the RB-tree. The
following public method corresponds to the Sedgewick’s algorithm on the RB-tree (in case of MSA,  changes
affect only the names of the balancing algorithms).

Here, RB-tree will be transformed into OST, obtained OST-tree will be balanced by Sedgewick’s algorithm
and then the height of the tree will be calculated. Finally, the private function of the class will be used to
repaint again the tree:
template<typename T>
void Tree<T>::balance(){

updateSizes(root);
root = balanceR(root);
int maxHeight = (int)log2(size);
updateColors(root, maxHeight);

}
Function updateColors is very simple. A static variable is used to store the depth of the current node.

The tree is traversed and only the lower nodes are colored in red. It operates in a linear time:
template<typename T>
void Tree<T>::updateColors(Node<T>* node, int maxHeight) {

static int level = -1;
if (node != NULL) {

level++;
node->bf = level < maxHeight ? 1 : 0;
updateColors(node->child[0], maxHeight);
updateColors(node->child[1], maxHeight);
level—;
}

}
The evolution of the RB-Tree (built with the data {1-6}) into a complete tree includes the following steps:

     2(1) 
   / \ 
  /   \ 
1(1) 4(0) 
      / \ 
     /   \ 
   3(1) 5(1) 
           \ 
          6(0) 

  2(6) 
   / \ 
  /   \ 
1(1) 4(4) 
      / \ 
     /   \ 
   3(1) 5(2) 
           \ 
          6(1)  

       4(6) 
       / \ 
      /   \ 
     /     \ 
   2(3)   6(2) 
   / \     / 
  /   \  5(1) 
1(1) 3(1) 

        4(1) 
       / \ 
      /   \ 
     /     \ 
   2(1)   6(1) 
   / \     / 
  /   \  5(0) 
1(0) 3(0) 

 

Table 2. From left to right: RB tree; corresponding OS tree; balanced OS tree; balanced RB tree
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4. Numeral experiments

Numeral experiments were conducted on the computers of the following properties:
Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz, 8.00 GB of RAM.

To benchmark different balancing algorithms, DSW, Sedgewic and MSA are compared with each other on
the two classes of the trees: on OST-trees and on the RB-trees. For each class, trees are created in two ways
– with random data and with ordered data. In every subcase, 5  trees with sizes from 1000 to 1*E8 are selected,
tested 20 times and the average time is taken.

In the tables below, every line corresponds to the balancing algorithms and columns correspond to the
tree sizes. Each element shows the average time method requires to re-balance the tree of a given size. As we
have two classes of trees and two ways to create the trees, we have four tables.

The following two tables show the results of the tests on OST- trees. In the first case, the tree is built with
the random data. In the second case, with the ordered data.

As we can see, in most cases Sedgewick’s method is faster, although, the difference decreases as the size
of the tree increases.

The following two tables correspond to the more actual structure - RB-Tree. Balancing RB-trees occurs
much faster via MSA.

Acknowledgement

The presented work was supported in part by the Target Research Program Grant of Iv.Javakhishvili
Tbilisi State University “The development of ordered container with improved functionality and efficiency “

 1000 10000 100000 1000000 10000000 100000000 

DSW 0,1234 1,5485 38,0266 455,544 4510,05 44519 

Sedgewick 0,08275 0,64175 8,51495 118,487 1439,36 18332,5 

MSA 0,16505 1,3371 15,8386 187,666 1887,54 18886 

Table 3. Average time for the OST- tree built with the random data

 1000 10000 100000 1000000 10000000 100000000 

DSW 0,03235 0,5917 6,841 108,509 1065,52 10044,4 

Sedgewick 0,06395 0,62505 6,1622 58,8476 605,826 6478,43 

MSA 0,0884 0,7524 6,5699 65,2096 639,261 6321,94 

Table 4.  Average time for the OST- trees built with the ordered data

Table 5. Average time for the RB-Trees built with the random data

Table 6. Average time for the RB-Trees built with the ordered data

 1000 10000 100000 1000000 10000000 100000000 

DSW 0,03545 0,44375 6,7467 273,303 3092,49 48030,1 

Sedgewick 0,08365 1,0965 20,8714 273,696 2644,07 41896,1 

MSA 0,08055 1,0372 20,4426 255,203 2623,6 38453,4 

 

 1000 10000 100000 1000000 10000000 100000000 

DSW 0,03525 0,41095 3,6737 82,8156 884,735 8848,1 

Sedgewick 0,05155 0,551 5,9204 91,59 902,526 9310,06 

MSA 0,0261 0,4845 3,74255 59,7136 874,461 7504,03 
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informatika

sejvikis dabalansebis algoriTmis modifikacia

k. gelaSvili*, n. grZeliZe**, g. SveliZe§

* ivane javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti, zust da sabunebismetyvelo
mecnierebaTa fakulteti, Tbilisi, saqarTvelo
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§ saxelmwifo usafrTxoebis samsaxuri, operatiul teqnikuri departamenti, Tbilisi, saqarTvelo

(warmodgenilia akademiis wevris m. saluqvaZis mier)

damuSavebulia sejvikis dabalansebis algoriTmis modifikacia. sejvikis algoriTmisgan
gansxvavebiT, am algoriTmis Sedegi yovelTvis aris sruli xe. ufro metic, SemoTavazebulia
am meTodis ganzogadeba wiTel-Sav da AVL xeebze, kvanZis umniSvnelo cvlilebiT misi
gaZlierebis gareSe. imisaTvis rom davadginoT axali modifikaciis efeqturoba Sesrulebis
drois terminebSi, Catarebulia ricxviTi eqsperimentebi dalagebul da wiTel-Sav xeebze
DSW algoriTmisTvis, sejvikis algoriTmisa da misi modifikaciisTvis. xeebi agebulia
rogorc daxarisxebuli, aseve SemTxveviTi monacemebiT. testebis Sedegebis mixedviT cxadia,
rom wiTel-Savi xis SemTxvevaSi SemoTavazebuli axali algoriTmi swrafia sxvebTan
SedarebiT.
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