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ABSTRACT. In the paper some theoretical and practical problems of the indirect test of tensile
strength of materials, known asthe Brazilian method ar e consider ed. The contact width, corresponding
loading angle, and dlliptical stresses obtained through solution of the contact problems are used as
boundary conditionsfor cylindrical specimen. The problem of thetheory of elasticity for a cylinder is
solved using M uskhelishvili’smethod. Numerical examplesare solved using M ATL AB to demonstrate
theinfluence of defor mability, curvature of the specimen and platenson thedistribution of thenormal
contact stressesaswell ason thetensile and compressive stressesacting acrosstheloaded diameter. In
the paper firstly is given a quantitative assessment of principal normal and shearing stresses in
diametrical and nearby chordal sections of a cylindrical specimen, where they can reach critical
magnitudes and create initial local tensile-shear cracks long before the tensile stresses reach their
limit in the center of thedisk. In such casesthemost likely place of splitting adisk in the Brazilian test
isnot diametrical, but isalong chordal surfaces, which occur on border lines of theloading area. ©
2016 Bull. Georg. Natl. Acad. Sci.
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TheBraziliantest, developed by Carneiro and Barcellos [1], found widespread application because of its
practical convenience. The International Society for Rock Mechanics (ISRM) [2] officially suggested the
indirect method for determining the tensile strength of rock materials. The standard test method can be
followed according to American Society for Testing and Materials (ASTM) [3] for different kinds of anisotropy
and homogeneity of testing rocks, concretes, glass, and many other brittle and not quite brittle materials (e.g.
nuclear wastes (ASTM C1144-89) [4], asphalt concrete etc.). The European standard for testing the tensile
strength of concrete specimenswas approved by the European Committee for Standardization (BSEN 12390-
6: 2000) [5].

The history of development and widespread practical application of the Brazilian test in rock mechanics
was reviewed and investigated most recently by numerous scientists, [6-8]. Ever since the devel opment of
the Brazilian test method scientists were interested in the questions:

- Why are samples often not split along theloading diameter, asto the basic idea of the Brazilian test, but
at some distance away from it?

© 2016 Bull. Georg. Natl. Acad. Sci.
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- How and why doesBraziliantest overestimate the tensile strength of materials[6,9]?

A number of scholars paid attention to these problems shortly after the popul arization of the Brazilian test
method, e.g. Hudson [10,11], Mellor and Hawkes[12], Hooper [13], Wijk [14], Hondros[15], Chenet al. [16],
Lavrov and Vervoort [17], Marion and Johnstone [18], Procopio et al. [19], Jonsen and Haggblad [20],
Markides and Kourkoulis[21], Japaridze[9,22,23] and others suggested different analytical and numerical
solutions and improved schemes, generalized for different kinds of anisotropy and homogeneity of testing
rocks, concretes and other materials.

In the vast mgjority of these studies much attention was placed on the components of tensile and
compressive hormal stresses, or deformationsin the diametrical section of the disk specimen. It is assumed
that tensile stresses are mainly responsible for splitting a sample. The primary cracks always are tensile
cracks appearing in the center of adisk, and shear cracks, if they generally appear on the disk periphery, asa
rule, are secondary ones. Therole of the deviatoric shear stressesin the chordal sections, in the formation of
cracks in the sample long has been seen only qualitatively, although, as is known, the deviatoric stresses
control the distortion, and many of the criteria for failure are concerned primarily with distortion. Conse-
guently, some of the above mentioned questions, especially concerning the mode of failure of specimensin
the Brazilian test, remain open for solution. Different results of the experiments and various opinions and
explanations of these results continue to exist today.

A sufficiently full description of thisdiversity isgiven by Li and Wong [6]. Typical interpretations of the
different investigators concerning the crack initiation and propagation may be grouped in the following way:

1 Thefailure of the Brazilian disc begins as an extension fracture in the center (interior) of the disk and
then propagates to the top and bottom surfaces [24-27]. Cracks will occur if the maximum tensile stress
exceeds the tensile strength.

2 Insomelaboratory Brazilian teststhe crack initiation points was observed to be located away from the
center of thetest disc [7]. In addition, the stress concentration near the loading platen occasionally leads to
an early shear failurefractureintherock [ 7,10,26,28].

3. Thecrack initiation point of the Brazilian test may be located near the loading point [6,8,9].

Influence of mechanical parameters of the sample material and |oading device on the rupture character of
the cylindrical specimens and on the results of Indirect Tensile Splitting “Brazilian” test, still presents the
subject of an experimental study for scientists.

This paper analyzesthe fields of the normal stressesand of the shear stresses, derived in two dimensional
closed form solution adopting the complex potentials method of N.Muskhelishvili [29].

Experimental Background

I nfluence of mechanical parameters of the sample material and |oading device on the rupture character of the
cylindrical specimens and on the results of Indirect Tensile Splitting “Brazilian” Test still presents the subject
of anexperimental study for scientists. Fromthe numerous experimental investigationsand practical applica-
tions of the Brazilian test for rocks and other hard materials some of them are considered below.

The Standard Test Method for Splitting Tensile Strength of Intact Rock Core (ASTM) [3] was used by
Daemen[7] for YuccaMountain Tuffs(Fig. 1, a, b), by Basu[30] for sandstoneand granite (Fig. 1, ¢, d). Similar
formsof cylindrical specimens rupture have been reported by Rocco et al. [31] for concretes, Iglesias, et al.
[32] for ceramics, Johnsen, et a. [20] for compacted powders, and others.

It should be kept in mind, that in the most part of these worksdiametrical or nearly diametrical fracturesare
categorized as primary, and the fractures, which deviate from the center too much are considered as second-
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Fig. 1. Examples of chordal fracture in Brazilian test of Yucca Mountain Tuffs (a,b)

(From Daemen, et al. [7], sandstone (c) and granite (d) specimens

(From Basu, et al. [30] ).

ary ones. However, as it was noted already by Mellor and Hawkes [12], even fastax photography could not
identify the origin of the sequence and there is no experimental evidence that the diameter of the sloping
curve of the shape of the cracksis always experimental technical error, or the result of sample heterogeneity.
To date there uncertainty often remainsfor Brazilian tests asto whether cracks begin fromthe contact surface
of the sample or from the center.

Theoretical Prerequisites

Typical schematics of the devices of Suggested Method for Determining Indirect Tensile Strength by the
Brazilian test according to International Society for Rock Mechanics (ISRM) [2], Standard Test Method for
Splitting Tensile Strength of Intact Rock Core Specimen of American Society for Testing and Materials
(ASTM) [3,4] and the European Standard EN 12390-6:2000 hasthe status of British Standard BSEN 12390-
6:2000[5], arerepresented inFig.2.

Inthelong practice of the application of the Brazilian testinthe ASTM method aswell asISRM and other
standardized methods, the splitting tensile strength s; shell be calculated as follows:

Sy =—— O
PRL

were - P —maximum applied load indicated by the testing machine; L and R — thickness and radius of the
specimen.

According to (1) it is assumed that the principal tensile stresses are distributed uniformly along the
vertical diameter (- R £ y £ R) and theestensile stresses are responsible for failure of the specimen in the
Brazilian test. Morerefined analytic solutions for standardized Brazil test schemes are given by Kourkoulis

and Markides[33] and Japaridze [9,22,23]. In their studiesacylindrical specimenwith radius Ry, length L

and the loading jaws with radius of the contact faces R, compressed (Fig. 3) by forces P, touch each other

on the surfaces with angle width 2q; .
According to the derivations of the contact tasks of the theory of elasticity [34,35], the half-width of the
contact surface - ais given by:

_ 2PRK  a;+1 kp+10 2
pL(

1-R/R)&4m  4my o

where: “Muskhelishvili’s coefficient” is defined as k; = (3- 41), k, =(3- 41,), for planestrain (when,
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Fig. 2. The schemes of apparatus of ISRM (a), of ASTM (b) and BS EN (c) Standard Test Methods for Splitting Tensile
Strength of Intact Rock Core Specimen.

Fig. 3. Compression of a cylindrical specimen between curved jaws. Z and - Z; are the boundary points of the contact
surface.

for example, in the Brazilian test the thickness of the disk is more than the radius, i.e. L>R;) and
ki =(3-ny)/(@+ny), ky=(3-ny)/(+ny), for plane stress, when L<R;; shear modulus

m =E /2(1+ny), my =E,/2(1+n,), ny, E and n,, E, are Poisson’s ratios and elasticity module of
contacted bodies, respectively.

Inequation (2) R, ispositive when the centers of the curvature of the specimen and the jaws are on the
sameside (asshowninFig. 1), and it isnegative when the centers are on different sides from the contact line
y==R,.

If the frictional contact stresses between the specimen and platens are neglected because of their small-
ness [34-36], the contact pressure in the polar coordinates will be:

2P
p@) =——-ya’- R¥cos’q, ®
pa‘L
where (p/2-dg) £q £ (p/2+dg); (3p/2-dg) £9 £(3p /2+0d), do =arcsin(@al Ry).
Itiseasy to prove that (3) represents the equation of an ellipse with the small semi-axis as a half-width of

the contact surface (2) and the big semi-axis 2P /pal presenting maximum contact stress p,, &t the
points g =p /2 and g =3p /2. Using series expansion, equation (3) can be expressed in the complex
formulation asfollows:

R 22 +7°

u
_ - a,
(a+7)" 2(2+7) K

4p
p(z+37)

p@) =

D> Q) [N

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016



Shear Stresses in the Indirect Test of Tensile Strength of Rocks and other Hard Materials 49

where z=x+iy= reiq, 7z = Rleiqo, 3 =Re o , qo =arccos(a/ R), 7z +7 =2a. Pointszand z, onthe

complex plane z = z/ R, correspond to the points s =gl ,and sq = ed 0. Consequently, if to usethe
correction for the equivalence of sum vector of contact pressure to the external load P:

P
A= (e’ 2R e = ®
44pa 44pa
boundary conditions according to (4), (5) and [29] can be written as:
F6)+FE)-sF(6)-32v(s)= A+B[s 2+57) ©

where F(s) and Y (s) arethe sought functions of complex potentials onthe plane s = ed , F(s) isa
conjugate and F '(s ) isaderivation of F (s ) . Corresponding analytic functions of the complex potentials
obtained in[22,23] aregiven by:

u
——Uu.
i U]

2 BRIO ; L nZa (g
pi% RZ 22 Eé?lz- 2 7#-72y § g £-2 7Y ®
The combination of normal s, s y and tangential Ty stress componentsin the disk section can be found

by substituting these functionsinto the well-known formul as of K olosov—Muskhelishvili [29] for a Cartesian
reference system:

Sy+s, =28 (D+F (DY
Sx-Sy+2it,y =28F (+Y ()Y ©
The normal stresses along the loaded diameter (x=0), obtained inthisway aregivenin[22,23]. Thenormal:

Sx:» Sy and shear tyy stresses in the arbitrary point of a disk according to functions of the complex

potentials (7),(8) and equations (9) are given by:

é . 3 22 _2\(=_n2) U
& o RO -2 ®=A RO 2_ 2 reo(z- #°)(z- ”)
N2 N A RDE A 2 R T
25 2 2 2 2N 2 2\(2. 2"
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S5 7 2i2 a2 2§ s BRI 2 0
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As the calculation will be implemented using MATLAB, to write cumbersome transformation for the
separation of real and imaginary partsof eg. (10, 11) makesno sense. It will be done by MATLAB.

Discussion

Using the above mentioned anal yti ¢ apparatus the numerical examplesare calculated for theinitial dataclose
to Daemen’s, et al. [7] experimental results: radius and thickness of disc specimen R; =3cm, t=2.5cm; radius

of jaws curvature according to ISRM R, =1.5 R;=4.5 cm; elasticity modulus and Poisson’s ratio of disc

material: E; =15 GPa, n;=0.19; elasticity modulus and Poisson’s ratio of the jaws material: E, =210 GPa,
N, =0.3; maximum applied load P=50kN.

For theseinitial datathetensile strength of given samplesaccordingto eq. (1), s = 21.22 MPa, thewidth
of contact pressure distribution arcs and the appropriate central angle, calculated from (2), 2a=0.78 cmand
200 » 14° . Thecomponents of normal s, s , and shearing ty stressesindiametrical section (x=0) andin

nearby chordal sections at adistance from the disk centre equal to half width (x=0.5a) andto thewidth (x=a)
of contact interface are computed by MATLAB according to equations (10), (11).
Graphical representations of these stresses, normalized against Hertzian tensile stress (1), i.e. appropri-

ate stress concentration factors of tension T =s,pRL /P, compression C=s ,pRL/P and shearing

S=t,PRL/P inthe Cartesian coordinates are given in Fig.4. Numerical extremal values of these stress
concentration factors at the disk diameter (x/a=0) and nearby chordal sections (x/a=1) for the applied load
P=50 kN, radius and thickness of disc specimen R =3 cm, t=2.5 cm; radius of jaws curvature R, =1.5R;

R, =¥ ; modulus of deformation E; =10,15, 20 GPaand Poisson’s ratio of disc material n,=0.19; elasticity
modulus and Poisson’s ratio of the jaws material: E, =300 GPa, n, =0.3, aregivenin Table 1.

Fig. 4 and Table 1illustrate: The maximumtensile stress concentration factor in the center of adisk for the
giveninitial parametersvariesinlimits0.89-0.91, i.e., intensity of tensile stresshere differsby 9-11% fromthe
same, calculated from Hertz’s eq.(1), which is now applied in the standardized methods. This difference is the
first factor of overestimation of tensile strength in Brazilian test. Value of this difference increases with the

______________________

e = e e = e ——

R fussns FrandierScr (1)~~~ -

Ry R Tipg, g ST DL LR 'O W

siress conecerdration factors

Fig. 4. Principal normal tensile (T), compressive (C) and shear (S) stress concentration factors (SCF), on the vertical
diameter (x=0; 0<y/R;< 1), and on the nearby chordal sections (x=0.5a) and (x=a).
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Table 1. Extremal values of stress concentration factors: T,C,S at the disk diameter (x/a=0) and nearby
chordal sections (x/a =1) for the: applied load P=50 kN; radius and thickness of disc specimen R;=3 cm,
t=2.5 cm; radius of jaws curvature R,=1.5R,= and R,=¥; modulus of deformation E, and Poisson’s ratio

of disc material n,;=0.19; elasticity modulus and Poisson’s ratio of the jaws material: E,=300 GPa, n,=0.3

E1 10 (Gpa) 15 GPa 20 GPa
R/R: | 0.67(ISRM) | O(ASTM) 0.67 (ISRM) 0(ASTM) | 0.67(ISRM) | O(ASTM)
aRy 0.159 0.092 0.131 0.076 0.114 0.066
200 (°) 183 105 15.04 8.67 131 7.56
xla 0 1 0 1 0 1 0 1 0 1 0 1
T | 0890|0806 | 0.905| 0.875 | 0.897 | 0.839 | 0.908 | 0.887 | 0.901 | 0.856 | 0.909 | 0.893
C | 2722|2549 | 2733 | 2672 | 2727 | 2607 | 2.735 | 2.693 | 2.730 | 2.638 | 2.735 | 2.704
s 00 |2630| 00 | 4605 | 00 | 3221 | 00 |5637| 00 |3708| 00 | 6.450

decrease of modulus of deformation of specimen and will be bigger for curved jaws (ISRM) in comparison to
both: plane plates (ASTM) and/or sharp indenters.

Theintensity of the tensile stress decreases with the distance from the center and in some points y = +yj,
the tensile stress equal to zero. Over these points the sign of the normal stresses changes and compressive
stress rapidly increases approaching to the boundary [23]. These points are closer to the center and accord-
ingly, the diametrical part of action of compressive stressesis bigger astherigidity of the specimen-platenis
lower and the contact interface is wider. The action of high intensity compressive stresses in the external
parts of the loading diameter will somewhat impede the spreading of the diametrical tension crack from the
central part of adisk. Thismay bethe second factor of overestimation of tensile strength inthe Brazilian test.

Principal normal s, s y intheinternal part (x=0, y = £y ) of the disk diameter and in nearby chordal

sections (x/a=0, 1) differ little from each other, but this differenceincreases very significantly in the periph-
eral parts of these sections. The shear stresses also grow rapidly and near the contour (x=a, y/R »0.9) of
the disk, shear stress concentration factor S=2.6, 6.5 . It means that for given typical initial conditions
( E; =10, 20 GP&) maximum shear stress3.25, 7.3 timesmore than maximumtensile stress.

Such large shear stress on the edges of the loading surface confirm that non-elastic deformations, plastic
bands and possibly primary local cracks can appear on the front line of the loading interface long before
tensile stressesreach their limit in the center of adisk. At the sametime widening of theloading interface leads
to the lateral movement of the contact edge, where the maximum shear stress occur. These resultsin the so-
called “atypical” fractures (Fig.1), appearance of which usually is considered as indication of an invalid
experiment. This kind of failure mode was observed in experiments and is described in publications
[7,12,20,30,32].

At the same time the development of the oncoming cracks due to shear stresses in the chordal sections
can complete the splitting of the disk. Such “tensile-shear” kind of the failure mode has been observed in
experiments and is qualitatively described in the publications and more recently [6,8].

Analytical assessments and tests show that it isvery difficult to avoid non-elastic deformation on adisk-
jaw contact without loss of test accuracy. Application of the curved jaws or false platens of low yield point
metal, or cardboard “platen cushions” cannot completely exclude local inelastic deformation on the loading
surface. The latter will cause widening of the contact width, lowering of the peak contact pressure and
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reducing of the stress concentrationsfactors. Plastic deformations on athin of the contact rim practically will
not influence the tensile stresses on a large internal parts both of the loaded diameter and nearby choral
sections. But as a result of contact widening, very large shear stresses in the external parts of these choral
planes appear, whereas in the internal part of these chordal planes tensile stresses act, that differ little from
the stress in the loaded diameter. So in such cases the most likely place of splitting a cylindrical disk in the
Brazilian test becomes the chordal planes and the cleavage occur due to shearing, but not by spliting.

Conclusions

1 Inthispaper attentionispaid to the deviatoric shear stresses, tensile and compressive normal stresses
in the nearby off-diametrical chordal sections, and to their rolein the formation of cracksinthe sample. The
study underlines this problem on the basic of the results of experimental and analytic investigations and
presents the quantitative assessment of principal normal and shearing stresses in diametrical as well as
nearby chordal sections of a cylindrical specimen, where they can reach critical intensity and create initial
local tensile-shear cracks.

2. Anaytic solutionsare derivedin two dimensional closed form solution, applying the complex potentials
method. The results are compared with those of an experimental study of mechanical behavior of rocks and
other hard isotropic, homogenous materials.

3. Themaximal tensile stress concentration factor in disk center for the given initial parameters differs
from the same, calculated from Hertz’s equation, which is now is applied in the standardized methods. This
difference is first factor of overestimation of tensile strength in Brazilian test. Value of this difference in-
creases with the decrease of modulus of deformation of specimen and will be bigger for curved jaws (ISRM)
in comparison to both: plane plates (ASTM) or sharp indenters.

4. The action of high intensity compressive stresses in the external parts of the loading diameter
somewhat impedesthe spreading of the diametrical tension crack from the central part of adisk. Thismay be
the second factor of overestimation of tensile strength in Brazilian test.

5. The intensity of shear stresses in periphera parts of chordal planes grows rapidly, and near the

contour (x=a, y/R; »0.9) of adisk, shear stress concentration factor S=2.6, 6.5 . It mean that for given

typical initial conditions ( E; =10, 20 GPa), maximum shear stresses 3.25, 7.3 timesmore, than the maximum
tensile stressin a disk center. This can result in non-elastic deformations, plastic bands and the appearance
of primary local cracks in the front region of the loading interface, and at last so-called “atypical” fractures
long before the tensile stresses reach their limit in the center of adisk.

6. Themost likely place of splitting cylindrical disk in Brazilian test isnot alwaysdiametrical, but often
isalong the chordal surfaces, which occur on border lines of the loading area. These planes come nearer to
the center with narrowing of the contact area and theoretically will coincide with the diametrical planeinthe
case of linear loading. Practically thisismore possible, if oneuses sharp indentors, small-diameter steel rods
on the contacts, or at least the planerigid platens (ASTM Standardized method), the use of which therewith
relieves the necessity to prepare additional pairs of jaws for specimens with different diameter.
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