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ABSTRACT. New computing algorithmsfor approximate solution of the two-point boundary value
problem with variable coefficientsaredescribed in the paper. Green function of thegiven boundary value
problem consider ed asa non-linear operator with respect to thevariable coefficient isapproximated by
meansof oper ator inter polation polynomial of the Newton type. For approximation of theinver seoperator
two different typesof formulaeare constructed. Conventionally these formulas can becalled dir ect and
modified for mulas. Consequently, for approximate solution of thetwo-point boundary value problem with
variable coefficientsdirect and modified inter polation operator methods ar e used. Description of the
algorithmsfor approximatesolution are provided and the computation resultsof thetest problemsare
given in tables. © 2016 Bull. Georg. Natl. Acad. <ci.

Key words. two-point boundary value problem, Green function, operator interpolation polynomial of the
Newton type.

In the theory of the non-linear systems, for solution of the identification problems the functional series and
interpolation polynomiasare used [1-3]. In theworks of V. Makarov and V. Khlobistov [2, 3], for non-linear
functions (operators) an interpolation formula of the Newton type is constructed and the value of the
remainder termisreceived. Such approach isbased on defining polynomial kernel of thefunctional (operator)
from interpolation conditions on “continual” units, which represent a linear combination of the Heavyside
functions. The above mentioned works have a theoretical and practical significance in applied problems of
the approximation theory of operators. The above mentioned authors do not consider the problem of realiza-
tion of interpolation approximation on electronic processing machines (PCs). In[4, 5], for approximate solu-
tion of the boundary problems of elliptic differential equations with variable coefficients the computing
algorithms are described, the computation results of the test problems are given, the convergence problems
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8 Archil Papukashvili

are studied by the numerical-experimental method. Inthe present work, aswell asin [4], the problems approxi-
mate solution of the two-point boundary value problem with variable coefficients by means of operator
interpolation polynomial of the Newton type are considered. Here, the Green function of differential equation
(boundary value problem) as a non-linear operator with respect to the variable coefficient is changed by
kernelsknown with operator interpol ation polynomialsof Newton type. For approximate solution of the two-
point boundary value problem various computational formulae are constructed. The description of therealiz-
ing algorithm and the computation results for the test problems are given. From the series of numerical
experimentsthe convergencewith respect to m parameter (m- the degree of operator interpolation polynomial
of the Newton type) is revealed.
Problem. Consider the two-point boundary value problem for ordinary differential equation:

{u"(x)—q(x)u(x):—f(x) ,oxe[ ] 0, )
u(0)=u(3= 0.a(x)z 0a(x) f(xjeLs[ ] @
a(x)=0, q(x), f(x)eL,[01].

Problem (1) in space W22’0 (O,l) has the only solution, which can be given by the Green’s function as follows:
1

u(x) =[G (xx a()) f (x)ax @

0

Denotation G(x,x,q(.)) shows that the boundary G(x,x) depends on the Green’s function q(x)
(variable coefficient), i.e. Green’s function can be considered as a non-linear operator with respect to g:
G:L5[0,1] - c([01]x[01]),
L3[0.4]={a(x):a(x) € L,[0,1],q(x) > 0,vx<[0,1]}
Approximate solution of problem (1) givenin [3] by means of operator seriesis considered. It is shown
that operator G isanalytical according to Gatto at point =0, if

M = {q(x):q(x) e 15[0.], Ja(3)], 10y < 4}
then on set M the series

G(xx,q(.))=G(x x ,()+Z(— )I‘J‘J.{HG(ZN 7, pafz )}G(zi X, )dy...dz. €)

i=1
Where 7, = X,

G(X'X’o):{x(l—x),xﬁxsl @

are equally convergent, i.e. any q(.) is aproximated by means of Green’s function built for q(.)=0.

Consider operator interpolation approach to the solution of boundary value problem (1). In boundary

value problem (1), change Green’s function G (x.x .q ()) by the m-order operator interpolation polynomial of

the Newton type as follows:
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Gm(x,x,q(.))zG(x,x,0)+
if f{ (xx.2,.... )HH(Zj—Z;—l)-[q(zj)—h(i—l)} dz - d ©

7,=0
For better illustration let uswrite formula(5) asfollows

11
Gm(x,x,q() (x.x,0) +IIK1 (xx,2)0(z)dz +
00
11
_”Kz(x,x,zl,zz)q(zl)[q(zz)—h}dzldzz+
0z
111
J.J‘J-K3 (XX,2,2,,23)0 [ h][ Zh}dzldzzdngr -+
0z2

i

Z

O t—y

iz

j Km(x,x,zl,zz,...,zm)q(zl)[q(zz)—h]..[q(zm)—(m—l)h]dzldzz...dzm ©)

Zm-1

where the operator kernels

Ki (%X, 2,..., szazl...a; G(x.x,z;) @
i
zl—hZH(.—z]),l—lZ, ,m,
=t
. . 1 z>0,
. H(z)=
Heavy-side function H (z) {0, ,<0,
Interpolation grid space h:(cm—co), 0<q(x)<c, ¢ = minq(x)
(m+1) xe[01]

C _Q%]q( ).a(x) e C[0,1].

Construct operators K, K,,... kernelsinformula(6) intwo different ways: 1. Construct operator interpo-
lation polynomial of the Newton type by the direct method (DM), where Green’s auxiliary functions built by
exact method will be used; 2. Construct the operator interpolation polynomial of the Newton type by the
modified method (MM),where Green’s auxiliary functions built by approximate method will be used.

Direct operator inter polation method (DOIM). Toillustratethedirect method of ~ construction of the

operator kernels let us describe the process of construction of the operator kernel Kl(x,x, zl) in detail.

Operator kernel K (x,x,2) isgiven by

10
Kl(x,x,zl):—ﬁa—aG(x,x,Vl),Vl:hH (7). ®
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As is known [6, 7], Green’s function G(x,x ,Vl) satisfies the following boundary value problem

;—ZG(X X,V )—hH (x-2)G(x.x,\; ) =—d (x-x),

< ©
G(0.x,\1)=G(1x,V;)=0, 0<xXx <1,

Where d(z) isDirac deltafunction

d(z):{z’,zzi%, [d(2)cz=1 (10

Differentiate system(9) by z and multiply it by _% .Asaresult of dementary transformation for definition

of K;(xX,z) weget boundary value problem

2
7 Ki(xX,z)—hH (x=27)Ky(x,x,z)=d(x=2)G(xX,V),
Ky (0X,2)=K;(1x,7)=0. (11)

By the use of Green’s function we obtain
1
Ky(xx,z)= [G(xhW)d (h-2)G(hx.\)dh =-G(x,2,%)-G(z.x, ), (122)
0

i.e. Ki(xX,2) isrepresented as the product of two green functions G(x,z,V;) and G(z,x,V;). These
functions are not built directly. First the Green’s function G(x,x,\/l) dependent on X and z parametersis
built, which will have two forms. And then the above mentioned Green’s functions will follow from it as
private cases. For construction of Green’s function G(X,X,Vl) satisfying boundary value problem (9) its
principal propertieswill be used. Function G(x,x,\/l) and itsx-differential with x are continuousat point z ,

while the funtion itself is continuousat point X and its x-differential hasafinite jump, whichisegual to 1.

For x < z the first form of Green’s function is given by:

at(x.z)+6 (%, z) %, xe[0x],

GM(xx, V) =16t (x,z) + ¢ (x,z) % xe[x,z],

13

0,3) e P ) e, xe[zd]

where
a'(x,z)=0
(\/ﬁ(z —x)Jrl)e(l’Zl)‘/E +(x/ﬁ(zl—x —1)e’(1’21)*/H
' (x.z)= ,
(b o) (5.0 1]

G (%) =x.ci (x.a) = ¢ (x.z)-1 (14
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L
C%"l(x’zl) >Jh ((Zlf ) (X 21) X\/ﬁ),

g (x,z) =%((le/ﬁ+l)c};1(x,zl)+x«/ﬁ).

Consequently, Green’s functions G(X, Zl,\/l) and G(Zl,x,\/l) in formula (12) representing private cases of
formula(13) will begiven by:

G (zx ) =6"(x,z) z+Xx -z, (15)
S (z,7) %, xe[0,7],
G (x 2 V)=
(X Z 1) Céyl(zlyzl)_e—x\/ﬁ+Cé,1(zlizl)_exx/ﬁy Xe[Zl,l]. (16)

For x > z we have the second form of Green’s function:

cf’l(x,zl)+c§*l(x,zl).x, xe[0,7],
G*(xx, ) = Csz'l(x’zl)'e_xﬁ+C§'1(X’21)'exﬁ, xe[z.x],

1)
cg'l(x,zl)'e‘xﬁ+c§’1(x,zl)~exﬁ, xe[x,1],
where
¢t (x,z)=0,
21 e(lix )\/H _ 67(17X )\/ﬁ
¢ (x.2)= (1-z)vn “(z)h
(zlJﬁ+1)e ' +(zl\/ﬁ—1)e t
z/h-1 & z/h+1 =
S xa) = Y w21 (x,7), &L (x,z) = B f . 21(x,7,), (19
1 1
Cé'l(x,zl):(‘,?l(x,zl)+ﬁexﬁ, cg'l(x,zl):cf'l(x,zl)—me W
Similarly, Green’s functions G(x, z,V;) and G(z,x,V;) informula(12) will begiven by
G*(z.xW)=¢"(x,2) 2, (19
21(z,2)- X, xe[0,7],
G”(x,zl.vl)={czl(l ! - F 1o (0)
< (z,z) e "+ (z,7)-€Y", xe[z.]].

It is easy to check that

G"(xz.V4)=G* (% 2,V), G (z.x,\)=G*'(7.,x,,),ifz =x
The higher-order operator kernels can be built in the same way. The process of building of the higher-order
operator kernels is a labor intensive process, but for the given boundary value problem the higher-order
operator kernelsare built once and for ever. The operator kernel dependent onthe parameters X , z,,z,,-+-, 7
isthe sumof i! -number of itemsof the i +1 Green functions multiplication products. Note that when we use
this method, with the increase of the approximating polynomials order all the kernels computed at the previ-
ous stage remain the same. Besides addition of hew numbersthe increase of approximating order causesjust
reduction of the grid values only.
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M odified oper ator inter polation method (M Ol M).The sameway asin case of the direct method of building
the operator kernels, let us describe the process of building the operator kernel K; (x,x, zl) indetail inorder

toillustrate the modified method. Decompose Green’s function, which is the determining factor in determina-
tion of the operator interpolation polynomial kernels of Newton type, into the degrees of small parameters of
h-degrees (h- the interpolation grid spacing).

Let usbuild the operator kernel K; (x,x, zl) . Differentiate Green’s function G(x,x, hH ( - zl)) inh-degrees

(xx hH Zw:G X, X, z1 (21)
j=0

and introduceit into formula (8) defining the kernel K, . The operator kernel Kl(x,x,zl) will begiven by:
10 <« 0 ~(1) i1
Ki(%X,2)=-=—G(x,x,hH (+=7))=-> —G]’(xx,7)h'™
1(xX,z) =~ o ( (~-2)) 7 (xx,2) @)
As is known, Green’s function satisfies the boundary value problem(9). Introduce the series of the Green’s
function differentiated with respect to h into formula (9) as polynomial. Take the problems similar to those

used earlier (see (9)) to define Ggl),j =0,12,... Then, compute the expressions ai p,J =012,..

Finally, wewill havethefollowing recurrent formulae:

G,Ql(xx z)= J.G (xh,0)-G (l) (h,x,z)dn, (23
%Gi(ﬂ(x,x,zl):G(x,zl,O)-Gi(l)(zl,x,zl), i=012..; (24)
1
(1) X(1-x), 0<x<x,
Gy’ (xX,2)=G(xx,0)= X(1-%), X <x<1 25
0
a—aGél)(x,x,zl)zo. (26)

x(1-x), 0<x<x,

G(()l)(X,X,Zl):G(X’X'O):{X (1-x), x <x<1,

L et us write some coefficientsin detail :

Gl()(xx z)= IG (xh,0)*G(h,x,0)dh =

4

3
3 3 2 3 2 3 3
(1-x)(1- x)(X 2—1]+x(1—x)£x——x——x—+x—]+xx[l—x+x2—X—J,xzx, @n
3 3 2 3 2 3 3 3
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Ggl) (xx,7)=

_X3j*(1x2 —%xgj]+x(1— X)*o* (1-3+ 3¢ -3 (- 2+

+x*x*{i+ix5_lx4+ix3—%x2 +(%x2—%x3j*(%x3—x2+x—%ﬂ, X <X,

28
+x*x*{i+ix5_1x4+£x3_1x2+[%x2 —%XSJ*(%X3—XZ+X —%H X > X. (8)

Theoretically, asin case of interpolation approach, computation of the higher-order operator kernelsis
not difficult, but the volume of work substantially increases (i.e. technical difficulties arise).

Approximate solution of the boundary value problemin the modified approach will bethe sameasin case
of direct method. However, this approach is somewhat improved compared to the previous one. Operator
kernels G(X,X,O) can be constructed by the use of Green’s function only, though neither this approach can

avoid the difficulty of multiple calculations of integrals.

Thealgorithmsof approximate solution of boundary value problem. For approximate sol ution of bound-
ary value problem (1), apply operator interpolation polynomials built by means of two different methods
(direct and modified).

Let usconstruct several approximate solutions of the boundary value problem (1) in detail. In m-approxi-
mation the U, (x) solution is given by

1

um(x)szm(x,x,q(.)) f(x)dx

Where G, (x.x,q(.)) isdefined by formula (5) because

Gu(exa()) - aluo)- (1 T @
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Therefore, for computation of the zero-approximation we get

1

uo(x)sz(x,x,O) f (x)dx =]<.x (1-x) f (x)dx +Ix(1—x) f(x)dx =

0

o'—.><

)X f(x dx+xJ.1 x) f(x)dx, (30

i.e., for computation of zero-approximation (for m= Q) it is necessary to compute the sum of two single
integrals.
Thefirst approximation (i.e.for m=1) isgiven by

1

w(x)= IGl(qu()) f(x)dx =

0

I[ (xx,0)+ J- (x,x,zl)q(zl)dzllf(x)dx:

1

jG(x,x,O) f (x)dx +J-UK1(X,X,21)q(zl)dzl} f (x)dx =up(X)—vy(x), (31)

0 0
where

1

vi(x) :—.[UKl(x,x,zl)q(zl)dzl} f(x)dx =

0

= I[J-G(x zl,zl)G(zl,x,zl)q(zl)dzl} f (x)dx. 32

Kernel K; ( X, X, Zl) isdefined from formula (12). We can stop here and describe the lower integral func-
tionin acomplex way. But for reliability of the computation resultsit is better to consider the division of the
integral special cases. Here, for different relation between the parametersx, x, z wetakeinto consideration

different types of Green’s function (15, 16, 19, 20). Since vl(x) can begiven by

XX X X x1 1x
x)=”...dzldx +”...dzldx +”...dzldx +J.J....dzldx+
00 0x 0x x0

1x 11
+”...dzldx +”...dzldx, (€<

X X XX
i.e. for thefirst approximation (m=1) we have the sum of 6 doubleintegrals.
In general case, for computation of V; (x) we need to find the sum of (i +1) -timesintegral (i +1)(i+2).
As noted above, with the increase of mthe workload is substantially increasing. In the formulae constructed

functions f(x) and q(X) participate as parameters.

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016
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Table 1. Test problem 1. Variable coefficient g(X)=1+X?, the right hand-side

f(x)=—(x4_x3+x2_x—2), exact solution u(x)=x(1-x).

x/u UExact Methods uo(X) Error ui(x) Error u2(X) Error
025 | 01875 DM 0.21018 0.02268 0.16485 0.02265 0.16796 0.01954
MM 0.21018 0.02268 0.17934 0.00816 0.18130 0.00621
050 0.25 DM 0.28333 0.03333 0.22146 0.02854 0.22675 0.02325
MM 0.28333 0.03333 0.24351 0.00649 0.24712 0.00288
075 | 01875 DM 0.21262 0.02512 0.17190 0.01560 0.17644 | 0.01106
MM 0.21262 0.02512 0.17768 0.00982 0.18174 | 0.00576

Table 2. Test problem 2. Variable coefficient ¢(x) =1+ X2, the right hand-side

f(x):—(x5—x4+x3—x2—3.75x+075)/\/§, exact solution u(x):x\/;(l—x).

x/u UExact Methods uo(X) Error ui(X) Error uz(x) Error
0.25 0.09375 DM 0.10877 0.01502 0.10849 0.01474 0.11093 0.01718
MM 0.10877 0.01502 0.08600 0.00775 0.08730 0.00645
0.50 0.17678 DM 0.20051 0.02373 0.17939 0.00262 0.18334 0.00657
MM 0.20051 0.02373 0.17317 0.00361 0.17649 0.00028
075 0.16238 DM 0.18145 0.01907 0.16052 0.00186 0.16400 0.00162
MM 0.18145 0.01907 0.16037 0.00201 0.16396 0.00158

Table 3. Test problem 3. Variable coefficient q(x)=1+ 2, the right hand-side f (x)=(1+p?+x*}sinpx

exact solution u(x)=sinpx.

x/u Uexact Methods Uo(X) Error u1(X) Error uz(x) Error
0.25 0.70711 DM 0.79473 0.08762 0.66236 0.04475 0.67183 0.03528
MM 0.79473 0.08762 0.69647 0.01064 0.70456 0.00254
0.50 1.00000 DM 1.12956 0.12956 0.89629 0.10371 0.91486 0.08514
MM 1.12956 0.12956 0.95838 0.04162 0.97554 0.02446
075 0.70711 DM 0.80384 0.09673 0.65948 0.04762 0.67017 0.03693
MM 0.80384 0.09673 0.67535 0.03176 0.68856 0.01854

Note: The pre-integral function can be discribed as afinite function transforming multiple integralsinto
repetitive ones. Then the approximate values can be computed by the quadratic formula.

Numerical experiments. For approximate solution of the boundary value problem a software product is
worked out in the software system MATLAB and is realized on a PC. For some practical tasks it is often
sufficient to take no more than a second order operator polynomials. Numerical results of the zero, first and
second approximations of solution are obtained for different test problems.

For illustration let us consider some test problems. Both in direct and modified methods we take the
second order for the integration accuracy e = 0.001 in decomposition of Green’s function into h- degrees,

which conditions O(h?) accuracy in the modified method.

Conclusions. The operator interpolation method is a numerical-analytical method. The mechanism of
functional analysisisused. Often for approximate solution of some practical problemit issufficient totakeno
more than a second-order operator interpolation polynomial. Using operator-interpolation methods with the
increase of the order of approximating polynomials the kernels computed at the previous stage remain the
same. Nevertheless, construction of the operator kernels of higher order is a labour consuming process.
Therefore, technically it isdifficult to achieve great precision.
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