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ABSTRACT. Random polynomials with independent identically distributed Gaussian coefficients are

considered. In the case of random gradient endomorphism 2 2( , ) :F f g R R   the mean topological
degree is computed and the expected number of complex points is estimated. In particular, the asymptotics
of these invariants are determined as the algebraic degree of F tends to infinity. We also give the
asymptotic of the mean writhing number of a standard equilateral random polygon with big number of
sides. © 2016 Bull. Georg. Natl. Acad. Sci.
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In this paper we consider pairs of random polynomials in two variables with coefficients which are normal
random variables and investigate some statistical invariants of such pairs. For random polynomials of one
variable, the most natural statistical invariant is the expected number of real roots. This invariant was
investigated by M. Kac [1]. In particular, if all coefficients are independent standard Gaussian random vari-
ables M. Kac was able to find the rate of growth of the expected number of real roots as the algebraic degree
of polynomial tends to infinity.

In the paper [2] the authors gave an effective formula for the average crossing number ACN(n) of a
standard equilateral random polygon (SERP) with n sides in three-dimensional space. This formula, in par-
ticular, gives an explicit asymptotic of this number as n  , which has useful application to analysis of
certain qualitative phenomena in physics and biochemistry.

Notice that this result has direct consequences for random knots (knot as usual means a closed curve
without self-intersections). Indeed, it is known and easy to prove that a closed polygon appearing in the
model of SERP almost surely has no self-intersections. Thus the mentioned result from [2] can be considered
as an estimate for the average crossing number of a random polygonal knot.

1. Much less is known about random polynomials in several variables. For example, it seems very difficult
to find the expected number of real roots of ( )n n -system of random polynomial equations with independ-
ent identically distributed Gaussian coefficients. Only M. Shub and S. Smale [3] succeeded to compute this
invariant for certain special distributions of coefficients. Some other developments in the spirit of [3] are
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summarized in [4].
These results suggested that one could try to estimate those topological invariants of random polynomi-

als and mappings related to the real roots of polynomial systems. A natural framework for such investigations
was suggested by G.Khimshiashvili [5]. As was explained in many problems of such type it is crucial to find
the mean value of topological degree of a certain random endomorphism. As was conjectured in [5], this
problem should be solvable for rotation invariant Gaussian distributions of coefficients introduced in [3].
This appeared possible indeed and a general result of such kind was published in [5, 6]. Similar problems were
also considered in [7, 8].

All these results were concerned with the distributions introduced in [4] but there do not exist any such
results in the case when all coefficients are independent identically distributed (i.i.d.) standard normals
(N(0,1)). In this note we aim at obtaining some results for such distributions of coefficients using results of [4]
and our previous results on topological invariants of planar polynomial endomorphisms [9].

By analogy with the one-dimensional case it is natural to consider a random polynomial endomorphism

F of  nR  defined by n random polynomials in n variables  with fixed algebraic multi-degree 1( ,..., )nm m m

and compute the mean topological degree as a function of n and im . For n=2 we get random endomorphisms

of the plane, which besides the topological degree possess other useful numerical invariants like the number
of cusps or the number of complex points. Endomorphisms of the plane are called planar endomorphisms and,
following [5], we refer to them as plends.

The main goal of this note is to estimate the mean value of the topological degree of a random plend
defined by the gradient of a random polynomial with i.i.d. central Gaussian coefficients. As was already
mentioned, this means that all coefficients are real random variables and have Gaussian (normal) distribution.
In the sequel the term “random polynomial” always refers to this situation. We pass now to exact formula-
tions.

Let 2R  be the ring of real polynomials in two variables. For 2P R , let deg P  denote its algebraic

degree, i.e. the highest order of monomials which appear in P. Any P with deg P m  can be written as

0

( , )
m

k l
kl

k l

P x y a x y
 

  ,

where appears at least one non-vanishing kla  with k l m  . The leader P  is defined as the sum of

monomials of highest order. Obviously it is a non-trivial binary m-form.

Suppose ( )
kl kla a   are real Gaussian random variables so we are given a random polynomial as above.

We can also take a pair of such random polynomials (not necessarily with the same distribution of coeffi-
cients) and consider a random plend

2 2( , ) :F P Q R R 
with these polynomials as the components. In such situation we speak of a Gaussian random plend and we
want to estimate certain geometric characteristics of such a random plend.

As is well known, if F is proper then its (global) topological degree DegF is well-defined [5]. As one could
await, a random plend almost surely (a.s.) has several nice properties of which we need here only one. It can
be proved applying the same reasoning as was used in [7] to show that a random Gaussian hypersurface is
almost surely smooth.

Lemma 1. A Gaussian random plend is proper with probability one.
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For those  for which F( is not proper, we set Deg ( ) 0F   . So we are concerned with estimating the

expectation (mean value)  E DegF  of random variable DegF  and the expectation of its modulus ( ' )E DegP .

Theorem 1. Let P be a Gaussian random polynomial in two variables of algebraic degree 1m   with

independent standard normal coefficients as above. Then the expectation ( ' )E DegP  of the absolute

topological degree of its gradient P  is asymptotically equivalent to 
2 log m


 as  m tends to infinity..

Proof.  First of all, notice that it is sufficient to estimate the average topological degree of the endomorphism

( )P   defined by leaders ,x yP P   which are binary homogeneous 1m  -forms.

Lemma 2.    ( )E DegP E Deg P  .

Notice further that the zero set Z of a homogeneous polynomial P  consists of a system of lines in 2R
passing through the origin. Their intersections with the unit circle 1S  give a finite set of points 1Y Z S  .

These points obviously appear in pairs and those pairs are in a one-to-one correspondence with the real

roots of polynomial in one variable P


 which is obtained from P  by dehomogenization (i.e. we divide

( , )P x y  by my  and introduce a new variable 
xt
y

 ). In other words, the number k of points in y  equals 2r,

where r is the number of real roots of P


.
We now apply one formula which can be proved as in [9].

Lemma 3. 1r DegP  .

Namely, first one interprets the number k as the Euler characteristic ( )Y  of the set Y. Next, according to

[5], the Euler characteristic of the zero set of homogeneous polynomial P  can be expressed through the
mapping degree of its gradient by the formula

( ) 2(1 ( ))Y Deg P   ,
or equivalently,

1 ( ) 1r Deg P DegP      .
By taking expectations of absolute values of both sides of this formula we get that the rates of growth of

 E DegP  and ( )E r  are equal. Thus we can estimate the expected value of absolute gradient degree by

finding the expectation of the random variable equal to r. This appears possible due to the following obser-
vation which follows directly from definitions.

Lemma 4. P


  is a Gaussian random polynomial of algebraic degree m with independent standard
normal coefficients.

Thus we conclude that one can compute the expected number of real roots ( )E r  of P


 using Theorem 3.1

of [4]. Hence the fact that  E DegP  has the asymptotic indicated in the statement of the theorem follows
from Theorem 2.2 of [4]. The proof is thus completed.

Actually, from the proof of Theorem 1 it follows that Lemma 3 enables us to find the exact mean value of

( )E DegP . Indeed, to this end we can use Theorem 2.1 of [4] and to compute ( )E r . Since coefficients of P


are i.i.d. standard normals. By the formula on page 8 of [4] we get
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2 11 1 ( )( ) log
1

n

x y t

xyE r dt
x y xy

 

 

 


   .

Finally we obtain the following integral formula for the mean topological degree.

Theorem 2.  
2 2

2 2 2 2 2
1 1 ( 1)( ) 1

( 1) ( 1)

n

n
n tE DegP dt

t t






   
  .

It should be noted that these results essentially use the specifics of gradient mappings and we are not yet
able to estimate the mean topological degree for arbitrary Gaussian plend with the components of algebraic
degree m.

2. Since the average crossing number of a knot in three-dimensional space characterizes some important
topological features of its position in the space [10], this result can be considered as a contribution towards
computing basic topological invariants of random polygons. As is well known, knots in three-dimensional
space also possess other important topological invariants like the writhing number [11] and self-linking
number [12] which are closely related to the average crossing number. Thus it is natural to try to compute or
estimate these invariants for a standard equilateral random polygon.

 Recall that a standard equilateral random polygon (SERP) is a widely used model for random curves and
extended physical objects like polymers and DNA molecules [2]. In our context it can be described as follows.

Let ( , , )U u v w  be a three-dimensional random vector that is uniformly distributed on the unit sphere

2S , i.e., the density function of U is

2 2 21 , 1.
( ) 4

0, .

if U u v w
U

otherwise
 

     


Suppose 1 2, ,..., nU U U  are n independent random vectors uniformly distributed on S2. An equilateral

random walk of n steps, denoted by nW   is defined as the sequence of points in the three-dimensional space

R3:

0 1 20, , 1, 2,..., .k kX X U U U k n      

Each kX  is called a vertex of the nW  and the line segment joining kX  and 1kX   is called an edge of nW

(which is of unit length). In particular, nW   becomes a polygon if 0nX  . In this case, it is called an

equilateral random polygon and denoted by nP . Note that the joint probability density function

1 2( , ,..., )nf X X X   of the vertices of  nP  is simply

1 2 1 2 1 2 1 1( , ,..., ) ( ) ( ) ( ) ( ) ( ) ( ).n n n nf X X X U U U X X X X X           

Let kX  be the k-th vertex of nP  ( 1)n k  . Its density function is defined by

1 2 1 1 1 2 1( ) ( ) ( ) ( )k k k kf X X X X X X dX dX dX             .

The average crossing number (ACN) of nP  can be defined as follows.

In [12] it is shown that the average crossing number between the non-intersecting edges 1l  and 2l  is

given by
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1 21 2

1 2 3
1 2

( ), ( ), ( ) ( )
1( , ) ,

2 ( ) ( )
I I

t s t s
ACN dtds

t s

   
 

  

 





where 3
1 2, : I R    are the arclength parametrizations of  1l  and 2l  respectively, , [0,1]I   and dot de-

notes differentiation over parameter.
For a polygonal knot K, one defines

1( ) ( , )
2

ACN K ACN X Y  ,

where X,Y are any non-consecutive sides of K.
 Recall that the writhing number of a knot is defined as follows [11]. We consider its two-dimensional

family of parallel projections and in each projection we count  +1 or -1 for each crossing, depending on
whether the overpass requires a  counterclockwise or  a clockwise rotation to align with the underpass. The
writhing number is then the signed number of crossings averaged over all orthogonal projections on planes
in R3. It is a conformal invariant of the knot. The writhing number measures the global geometry of a closed
space curve or knot.

Let   the arclength parametrization as above and ( )t


 denote the unit tangent vector for 1.t S  The

following double integral formula from [13] allows one to calculate the writhing number of two edges as above

1 1

1 2 1 2

3
1 2

( ), ( ), ( ) ( )
1

2 ( ) ( )
S S

t s t s
W dtds

t s

   

  

 



 .

Correspondingly, we define

( ) ( , )i jW K W l l ,

where il  and jl  are non-consecutive sides of K with 1 1 1i j n     .

Denote by ( )E W n  the mean absolute value of the writhing number of a SERP with n edges. Let us say

that two function ( )f n  and ( )g n  of n are asymptotically equivalent if ( )lim 1
( )n

f n
g n

 .

Theorem 3.  As n  , the function ( )E W n  is asymptotically equivalent to 1/2(3 /16 ln ) .n n
The proof can be obtained by the scheme used in [5] and based on the reduction to a symmetric random

walk on a real line. Indeed, according to [2] we have ( ( )) 3 /16 ln ( ).E ACN n n n O n   Notice that from the

integral formulas for the writhing number and ( )ACN n  it follows that the only difference between these two

invariants of knot is that the first one is obtained by counting each intersection in a planar projection of a knot
with a sign equal to the sign of the Jacobian of the Gauss mapping. Using the calculations from [2] it is
possible to show that the signs cancellation effect asymptotically leads to extracting the square root of

( ( ))E ACN n , which gives the result. An intuitive explanation is that the signs behave as in one-dimensional

symmetric random walk i. e., the probability of each sign on each step is 
1
2

. Thus the mean writhing number

is approximately equal to the mean absolute deviation of symmetric random walk on the real line with
[ ( )]M ACN n  steps, where [ ] denotes the integer part (entire). This explains the result, since it is well

known that such mean deviation grows as M .
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maTematika

SemTxveviTi polinomebis topologiuri
invariantebi

T. aliaSvili*

* ilias saxelmwifo universiteti, Tbilisi, saqarTvelo

(warmodgenilia akademiis wevris  e. nadaraias mier)

ganxilulia SemTxveviTi polinomebi, romelTa koeficientebi ganawilebulia gausis
kanoniT. gradientuli endomorfizmis SemTxvevaSi gamoTvlilia topologiuri xarisxis
saSualo da kompleqsuri wertilebis saSualos Sefaseba. kerZod, miRebulia am invarian-
tebis asimptotika, roca algebruli xarisxis maCvenebeli miiswafvis usasrulobisken.

mocemulia agreTve, standartuli SemTxveviTi tolgverda poligonebisTvis gada-
xlarTvis ricxvis maTematikuri lodinis asimptotika, rodesac gverdebis raodenoba
Zalian didia.
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