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ABSTRACT. Present work deals with multi-phase models of inventory control for cascade systems.
Situation is similar to that of queuing theory, the inflows are used to fulfill various types of demands.
Three models are introduced. The first two models are relatively easy and fit well the control of hydro-
energy system. They are implemented by means of dynamic programming. The third model is general,
cascade may include some types of enterprises together with their storages. In the case of homogenous
productions the model can be applied for the control of cascade hydropower stations. This model is the
problem of linear programming. In all cases optimality criteria is the maximum profit. © 2016 Bull.
Georg. Natl. Acad. Sci.
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While analyzing and modeling the production management problems it is important to apply the princi-
ples and methods of various brunches of operations research, in particular the general concepts and math-
ematical models of the inventory control theory. This sphere is of a great variety due to the reason that it
reflects the factors, together with its technical and economic features, production, demand, supply-storing,
marketing etc.

Many problems of inventory control can be posed as the problem of queuing theory. Most frequently
they are associated in the case of random flow control problem. The main issue of the queuing theory is the
“handling” of inflow, while in inventory control theory this is the “usage” of flow for the demand fulfillment.
There is not only a formal similarity between these two theories, but methodological as well [1].

Flow control with one base from the view-point of control theory was first treated in the 60-ies of previous
century [2, 3]. The models with the series of bases through the conveyer regime are considered completely in
the monographs [4, 5].

Here we consider the flow control in the cascade systems, where each “base” of inventory serves the
enterprise of some profile. These enterprises use some part of the flow (resource) according to the queue and
earn their income in this respect. The models for the cascade systems fit many problems of hydro and heat
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energy, oil production, sales and many other spheres of economy. Cascade systems are important in hydro
energy. This natural problem is well discussed in the monograph [5], where together with the engineering
tools the balancing equations, reflecting the essence of the problem are also given. Paper [6] deals with the
original method of accumulation of the energy in cascade systems – hydrogen, derived in the process of
electrolyze of water is used in the peak regime. Optimal control problem of a hydro-cascade is given in [7],
where the scheme of solution for the case of one common reservoir is obtained by means of the dynamic
programming method, while the case of multiple (consecutive) reservoirs is solved under one natural as-
sumption. Paper [8] suggests the general scheme of control of energy stations. The authors of this work aside
from the classical models [9, 10] discuss our work [7] as well.

Our problems are of multistage (dynamic) and multi-production type and their linear programming models
will be considered. On the stages the inflow will be assumed determined (will be equal to the statistical or
forecasted mean of the random variable). Stochastics may be involved due to the conventional standard
form. Generally the volume of the flow on the stage can be considered as the quantity of the purchase order,
which is not fulfilled exactly and the statistical distribution is known.

Let us introduce some notations:
T - scheduling horizon consisting of the stages 1, 2,..,t T ;

N - number of enumerated bases (enterprises), 1,2, , ; i N 

iQ  - inventory capacity of i-th base;

iI  - capacity of i-th enterprise (maximum resource that the enterprise is capable to admit at one stage);
t
iQ  - storage of i-th base in the beginning of stage t;
t
iu  - resource utilized by the i-th enterprise at stage t;
t
iv - resource stored by the i-th enterprise at stage t;

t
iu + t

iv - resource used by the i-th enterprise at stage t;
t

ir  - demand on i-th enterprise at stage t;
t
ic  - profit from the unit of i-th production at stage t;
t
ip  - penalty for the shortage (deficit);

 iW u  - quantity of production received from the resource u  at i-th base  i iW u u ;

  t
iW u  - profit from the resource of quantity u at stage t,     t t

i i iW u c W u  ;

   - cost of the unit resource;

, t t
i iu v   - variables, their number is 2NT..

Below we present mathematical models of the problems of various difficulties.  The first two problems are
concrete for clarity, though they may fit other cases as well. These models are of dynamic programming
format. Third model is general and is of linear programming type; in fact this is one of the dynamic problems
of production smoothing.

Problem 1. First consider one simple example, which is not rare in hydrology and which has stimulated the
idea of control of general cascade systems.

Assume the river flow is used to generate electric power, for water supply and melioration. We have one
hydro station with reservoir (possibly cascade of stations), and one more reservoir below for water supply
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and melioration.

Fig. 1. The scheme of successive parallel type

Conditions:
  

1 1 2 3 2 1,     2:  min , ,   t t t t t t tt u Q x I u u min Q u Q           . (1)

Here I - is the maximum waste of water of the hydro station at one stage. Administrative costs at each stage
for any decision are assumed constant. Thus, the optimal policy is the one, which maximizes the difference
between the profit of electric energy and the losses tied with shortage. Hence, the profit at one stage is

       1 2 1 2 2 2 3 3 3,t t t t t t tF Q Q W u u u p u u p       , (2)

where 2
tu  and 3

tu  correspond to the norms of water supply, , 2p  and 3p  are the losses (penalty) for the unite

of shortage, respectively.
Taking into account (1) and (2) we apply the optimality principle of dynamic programming. Denote

 1 2,t t
tf Q Q  the income for optimal policy from stage  t to stage  T (including), when at the beginning of stage

t  resources of water in reservoirs are equal to 1
tQ  and  2

tQ :

       
 2 2

3 3

2 3 2 1

1 2 2 2 3 3 3
1 2

; 
1 1 1 2 1 2 3

, max .
, ,t t

t t

t t t t

t t t t t
t t

t t t t t t t tu u
t

u u

u u Q u

W u u u p u u p
f Q Q

f Q x u Q u u u




  

          
      

(3)

At first glance the problem is three-dimensional, but due to (1), it is clear that the problem can be reduced

to the choice of  1u  and 2u  while 3u  is chosen automatically. Besides, it should be also noted that  2
tu   is zero

in most of the cases (melioration is seasonal).
Problem 2. Consider "renewable" homogenous cascade system - the cascade of hydro power plants with

N stations, when the reservoir exists only with the first station and there is an extra flow t
i  between (i-1) and

i stations. Under these conditions  i-th station (i>1) during the period (t , t+1) utilizes

1 1 2min ;t t t t t
i i iu I u           water and produces  t t

i iW u   energy with corresponding price

t t t
i iW W c . If as above the optimality criteria is the difference between the profit of electric energy and the

losses due to the shortage then the profit at stage i is

 1 1 1
1 1 1 1

, min ;   min ;
N i N i

t t t t t t t t
t i i j i i j

i j i j

F Q u W I u W I u r p 
   

                    
           

   

and due to the optimality criteria

      1 1 1 1
0 min ,

max ,
t t t
i

t t t t t t
t t t

u I Q x
f Q F Q u f Q x u

    

    . (4)
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Note that as in the first problem we can consider reservoirs with some stations in this case as well. Though
evidently this can be done for the case of 2-3 reservoirs.

Problem 3. Consider the general multi-production problem when each base utilizes t
iu  part of existing

resources, keeps t
iv  part in the storage and transmits the rest to the successive base (enterprise). The bases

generally produce the different production. Each of them receives the profit t
ic  from the unit resource and in

total t t t
i i iW c u   at a stage. This process consists of T stages and the existing in the storages resources can

be used on the consecutive stages. Using the above notations situation at stage t can be given in the Table:

Table 1. Multistep regulation of flow

            Q  

 Base 
Resources at stage t  Utilized Storage Remaining resources 

1  1
1
t tv x    1

tu   1
tv  1

1 1 1( )t t t tv x u v     

2   1 1
1 2 1 1
t t t t tv v x u v       2

tu   2
tv   

2
1 1

1 2
1

t t t t t
i i

i

v v x u v 



     

... . . . . . . . . . . . . 

k   
1

1

1 1

k k
t t t t
i i i

i i

v x u v




 

      t
ku   t

kv   1

1 1

k k
t t t t
i i i

i i

v x u v

 

     

… . . . . . . . . . . . . 

N   
1

1

1 1

N N
t t t t
i i i

i i

v x u v




 

      t
Nu   t

Nv   1

1 1

N N
t t t t
i i i

i i

v x u v

 

     

 

After the stage N there may remain some unused resources:

1

1 1

.
N N

T T T
i i

i i
v x u

 

  

Due to the above table we can represent our problem in the form of linear programming. The variables t
iu

and t
iv   1, ,  1,i N t T   are the sought variables. For each i and t they should fulfill the technical and

technological conditions of the problem. First of all the variables are bounded:

0 , 0 ,  , .t t
i i i iu I v Q i t     (5)

The balance across the stages between the used resources should be in accordance:

 
1

1

1 1

  . 
i i

t t t t t t
i i k k k

k k
u v v x u v




 

      (6)

If the optimality criteria is the maximum of total income and the production costs are assumed constant,
then the target function is given as the difference between the production income and the shortage penalty:
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   
1 1 1 1

, .
T N T N

t t t t t t t
i i i i i i i i i

t i t i
L u v u c r u p

   

      (7)

Thus, our problem will be posed analytically: find the values of the variables  t
iu  and t

iv , which fulfill the

conditions (5), (6) and maximize the target function (7).
Finally, it should be noted that the elaborated models are adequate to the posed problems and their

numerical implementation is quite easy.

kibernetika

maragTa grZelvadiani marTva kaskadur sistemebSi

j. giorgobiani

niko musxeliSvilis saxelobis gamoTvliTi maTematikis instituti, saqarTvelos teqnikuri
universiteti, Tbilisi, saqarTvelo

(warmodgenilia akademiis wevris, m. saluqvaZis mier)

naSromSi ganxilulia maragTa marTvis mravalfaziani modelebi kaskaduri siste-
mebisTvis. situacia msgavsia masobrivi momsaxurebis _ Semomavali nakadi gamoiyeneba
sxvadasxva saxis moTxovnilebaTa dasakmayofileblad. SemoTavazebulia sami modeli,
romelTagan pirveli ori SedarebiT martivia da kargad miesadageba hidroenergetikuli
sistemebis marTvas. modelebi realizdeba dinamikur daprogramebaze dayrdnobiT. mesame
modeli zogadia _ kaskadis SemadgenlobaSi SeiZleba iyos sxvadasxvagvari sawarmo TavianTi
sacavebiT. erTgvarovan sawarmoTa SemTxvevaSi modeli gamodgeba kaskaduri hidrosadgurebis
samarTavad. modeli wrfivi daprogramebis amocanaa. optimalobis kriteriumad yvelgan
aRebulia mogebis maqsimumi.
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