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ABSTRACT. It issupposed that presence of monovalent cationsisnecessary for in vitro for mation of
G-quadruplex, and the most effective cation is K*. We demonstrated that 15-mer sequences like
GGG(TGGG)3 (abbreviated name- G3T) arecapableto for m stable quadr uplexeseven in double-distilled
water with heat transition parameters: DHY" = 215 kcal/mol, T = 34.0° Can®T,, = 345° C.Inthe
range of K* ion concentrations from 12 pM to 3 mM inclusive, an intensive increase in quadruplex
melting temperature T, moder ate decr ease in melting width DT | and intensive increase in melting
enthalpy DH"" t0 6.6 kcal/mol are observed. On the basis of CD melting curves we have calculated

VH.

DH"; dependencecurveDHVH = f(T,) wasbuilt; and heat capacity increment DC_, = (1.56 + 0.17) kcal/
K.mol wascalculated. The extremely high value of heat capacity increment isin a good agreement with
theor etical suggestions, accor dingtowhich DNA G-quadr uplexesarehighly flexible.© 2017 Bull. Georg.

Natl. Acad. Sci.
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It is determined that G-quadruplex structures
formed in promoter regions and the telomeric DNA
ends play an important role in regulation of gene
expression[1-5].

It is considered that, besides specific sequences,
presence of monovalent cationsis necessary for forma-
tion of those four-strand G-quadruplex structures of
variousconformations. K* and Na' ionshavethe strong-
est stahilizing influence on G-quadruplex structures.

However, K* ions incorporate between the G-tetrads
and stabilize G-quadruplexes better that Na* ions that
are placed on planesformed by guanines|6, 7].

In the given work, we presented some new data
about the dynamic structure of 15-mer G-quadruplex
forming sequences, in particul ar, the possibility of G-
quadruplex (G3T) formation in absence of K* ions,
and we have demonstrated the extremely high flex-
ibility of G3T.

© 2017 Bull. Georg. Natl. Acad. Sci.
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Fig. 1. CD UV spectra of G3T sequence at different r = K*/G3T molar mixing ratios: 0, 0.5, 0.5, 1, 2, 3, 4, 6, 8, 10, 10,

10, 15, 20, 25, 30, 30, 35, 60; G3T concentration is 3 uM

Materials and Methods. CD spectra were
recorded with spectropolarimeter JASCO 500 A at
various temperatures. UV CD melting curves were
recorded in the temperature range from 10° to 100° C
using 0.5 cm quartz cells. GGG(TGGG)3 was purchased
from Integrated DNA Technologies, BE.

Results

CD Studies of K*-Induced G-Quadruplex formations
Figs.1,2 show the UV CD spectra of G3T in the ab-
sence and presence of different KC1 concentratios in
double-distilled water at 45° C. As it is seen from Fig. 1,
atabsence of K" ions, the band intensity at 264 nm is
1.6 mdeg, the increase in K* ion concentration within
the region 0-90 uM causes the increase in bend in-
tensity at 264 nm, and further increase in K* concen-
tration does not influence the bend intensity that
keeps 10.1 mdeg unchanged. The curve profiles are
characteristic of parallel structures with double chain
reversal loops bound to G-quadruplex [8]. Depend-
ence of intensity of those bands on K* concentra-
tion is presented in Fig.2. The presented data show

that G3T quadruplex is completely formed in double-
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distilled water at 90 uM K*, i.e approximately 30 mol-
ecules of K" are bound to G3T quadruplex.

UV CD Melting Curves of G3T

Fig.3 presents CD melting curves of G3T
quadruplex at various K* concentrations in double-
distilled water. As is seen, the increase in K* concen-
tration causes some shift of melting curves to higher
temperatures and narrowing of melting temperature
width AT. On the basis of the presented data, the

104

[ee]
|

CD (mdeg)

40 80 120 160 200
K" (uM)

o

Fig. 2. Dependence of CD band intensity at 263 nm on r
calculated from curves from Fig.1
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Fig. 3. CD melting curves of G3T quadruplex at 264 nm at

different K* concentrations — left to right: 0, 1, 12,
50, 100, 200, 400, 800, 3000 uM. Scanning
rate = 1°/min

dependence T = Log[K] ispresentedinFig.4. This
dependence show that there are two K*-dependent
melting regions. Thefirst region 0-12 UM isweakly
dependent on K*, and the second one 12 pM to
3.0 mM isstrongly dependent on K content. In the
firstcase, T increased from34.0°t041.5° C,andin
thesecond case T, increased from41.5° t0 85.0° C.
It is known that melting of G3T quadruplex isa
reversible and two-stage process[6]. Hence, the data
presented in Fig.3 gave the possibility to calculate
Van’t Hoff enthalpy with a standard method. The
obtained dataare presented in Fig.5. Asitisseen, the
dependence of melting enthal py on temperature has
alinear character, and AHV" increasesfrom 2.15t0 6.6
cal/mole when T _increases from 33.5° to 85.0° C.
The linear dependence AHY"= f(T ) gives a possi-
bility to calculate the heat capacity increment dAHVH/
dT_=AC_= (156 = 0.17) kca/K.mol.

Discussion

It is known that human genome contains about
380,000 GC-rich sites which can form non-canonic
structures of left-handed duplex Z-DNA and four-
stranded structures of G-quadruplex. In both cases,
presence of K*, Na', Cs', or Li* ion is necessary for
formation of the abovementioned structuresin solu-
tions. However, in case of Z-DNA formation, pres-
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Fig. 4. Dependence of melting temperature T of G3T on
the Log of potassium ion concentration Log[K*]

ence of 1-2 mole concentrations of relevant salts or
non-organic solvents is necessary. As for the G-
quadruplex, presence of UM or mM K* concentra-
tions is necessary for formation of this structure
[6,7,9].

The data presented in Figs.1,2 show that G3T
quadruplex isalready formed in double-distilled wa-
terat45° C, andtheUV CD intensity at 264 nmis1.6
mged. Addition of K* ions to this solution initiates
further formation of G-quadruplexes; and all G-
quadruplexes are formed in solution at presence of
90 uM K* and 3uM oligomer i.e not more than 30
moleculesof K* ionsarebound with G3T quadruplex.
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Fig. 5. Dependence of AHV" of G3T quadruplex on melting
temperature
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Our study showed that GGG(TGGG)3 sequence
forms G3T quadruplex even at absence of K* ions or
when K* concentration is so small that it equals the
atmospheric content of K* (see Figs.1,2). See also
[10].

CD melting curve of G3T at different K* con-
centrations gave a possibility to calculate AH
enthalpy, to build the dependence AH" = f(T ),

AC_=(1.56 +0.17) kcal/K.mol or 130 kcal/K.mol re-
calculated per GG base pair. These values are more
than 4 times higher than the values observed for sta-
ble globular proteins, and they are 2.2 times higher
than those for 12-bp GC rich DNA duplex [11]. The
high value increments demonstrated that the G3T
quadruplex is extremely flexible, and this flexibility is
caused by quadruplex fluctuations and partially with

and to calculate the heat capacity increment its ends.
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