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ABSTRACT. We extract numerical values for the strong coupling constant s from the revised ALEPH
 decay data for the non-strange vector hadronic spectral function. The distinguished feature of our

procedure is that we employ the global quark-hadron duality in the bounded below region,  c 
2s s m ,

where cs  is the onset of the perturbative QCD continuum. On this interval, we construct the modified

Finite Energy Sum Rules (FESRs) using the “spectral weights” klw (s)  (k,l=1,2..) associated with the

spectral moments of the invariant mass distribution. These sum rules are used in conjunction with the
dimension-two sum rule valid in the chiral limit. We have performed several determinations of the strong

coupling constant s and the continuum threshold cs , combining different klw  based FESRs with the
dimension-two FESR. The numerical values for the strong coupling constant from different determinations

are found to be in good agreement. We obtain, in the MS  scheme, the values 2( ) s exm = 0.322 0.011

using a dispersive modification of Contour Improved Perturbation Theory and 2( ) s exm = 0.298 0.012

using Fixed Order Perturbation Theory. © 2017 Bull. Georg. Natl. Acad. Sci.
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The inclusive hadronic decays of the -lepton provide an ideal system to study quantum chromodynamics

(QCD) at low and moderate energies (see the  pioneering work [1] and the literature therein). The accuracy of

the experimental data for various observables of the -lepton system is steadily improving [2,3]. On the

theoretical side, very accurate formulas are available. The relevant theoretical quantity, the Adler function,

has been calculated in perturbation theory up to order 4
s  [4]. The small non-perturbative corrections to the

observables are under control within the Operator Product Expansion (OPE). Confronting the perturbative

QCD (pQCD) predictions with the experimental data, one may determine the fundamental and non-perturbative

parameters of the theory. In particular, the precise determination of the strong coupling constant, 2( )s m ,

from non-strange  decays has been the subject of active investigations in recent years [1-5].



Strong Coupling Constant from Hadronic  Decays within the Dispersive Treatment 61

Bull. Georg. Natl. Acad. Sci., vol. 11, no. 3, 2017

 The central theoretical quantity of interest in these decays is the hadronic spectral function related with

the two point correlator of hadronic currents. The correlator is approximated in perturbation theory supple-

mented with the OPE. The QCD predictions can be confronted with the time-like t decay data owing to the

notion of the quark-hadron duality. An exhaustive review on the duality can be found in [5]. The duality is

implemented via the Finite Energy Sum Rules (FESRs) [6]. The FESRs are derived from Cauchy’s theorem
using the analytical properties of the hadronic current-current correlator. Analyticity and the renormalization

group (RG) invariance cannot be combined unambiguously. Usually, two approaches are used. They are

referred to as Fixed Order Perturbation Theory (FOPT) [1] and Contour Improved Perturbation Theory (CIPT)

[7,8]. It should be remarked that the predictions obtained within CIPT are deteriorated due to the non-

physical “Landau singularities”, which are present in the perturbative running coupling [9]. The dispersive or
analytic modifications of pQCD, developed in past years [9,10], are free from this inconsistency.

The present work is the continuation of works [11,12], where we have analyzed the high precision hadronic

-decay data from the ALEPH [2] collaboration using a new dispersive approach. This approach is based on

the “semi-experimental” representation of the hadronic vector spectral function

1 . c 1 c 1v ( ) | ( )v ( ) | ( )v ( ) | ,s ex ex pQCDs s s s s s s     (1)

where 1v ( ) |exs  denotes the spectral function measured on the experiment and 1v ( ) |pQCDs  is the corresponding

pQCD expression. The parameter cs  is the so-called continuum threshold, the minimal value of the energy

squared above, which we trust pQCD. This parameter should be bounded above 2
c0 s m    ( m  being the

mass of the  lepton). Otherwise, cs  must be large enough for pQCD to be valid. From (1) one can derive modified

FESRs which relates the weighted data integrals over the bounded below region 2
c maxss s m     with the

corresponding QCD  expressions. In previous works [11,12], we employed a modified FESR involving the

kinematic weight function. In the present work, we extend the same approach to the FESRs involving the

weights determining spectral moments of the hadronic invariant mass distribution [13]
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where 2
maxs m    and , 1,2..k l  .The purpose of this work is to examine the compatibility of these FESRs

with the dimension-two FESR, the sum rule which is fulfilled in the chiral limit because of the absence of the

dimension d=2 operator in the OPE of the correlator [14].

The basic object of the theoretical calculation is the two point correlator of hadronic non-strange vector

currents:

2 4 2 (1) 2 (0) 2( ) exp( ) 0 | ( ( ) ( )) | 0 ( ) ( ) ( ),q i iqx T V x V x d x g q q q q q q q               (3)

where ( ) ( ) ( )V x u x d x   is the vector current,  the superscripts (1) and (0) label the spin. For the non-

strange vector-vector correlator the spin zero component
(0) 2( )q  is numerically negligible. The imaginary

part of (1) 2( )q  is connected with the measured vector spectral function 1v ( )s

(1)
1v ( ) 2 Im ( 0).s s i   (4)

The exact non-perturbative correlation function  is analytic in the whole complex s-plane except the cut

running along the positive real axis. Using this fact one obtains from Cauchy’s theorem the FESR:



62 Badri Magradze

Bull. Georg. Natl. Acad. Sci., vol. 11, no. 3, 2017

0

0

(1)
1

| |

( )v ( ) ( ) ( )

th

s

s s s

w s s ds i w s s ds


   , (5)

where ths  is the hadronic threshold and ( )w s  is any analytic function in | |s M  with 0M s . The introduc-

tion of the Adler function
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allows us to rewrite the FESR as follows:

0

0

1
1

| |

( )1
( )v ( ) ( )

4
th

s

s z s

w z
w s s ds D z dz

i z



  

, (7)

where 2 2z Q q    and

0

1( ) ( )
z

s

w z w z dz  .

For sufficiently large 0s  the right hand sides of (5) and (7) can be calculated in pQCD. The QCD expression

for (1) 2( )q can  be represented as:

(1) 2 (1) 2 (1) 2 (1) 2( ) | ( ) | ( ) | ( ) |QCD PT OPE DVq q q q     , (8)

where
(1) 2( ) |PTq  stands for the pure perturbation theory approximation to the correlation function. The

perturbation theory approximation to the Adler function reads
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w h e r e

2( )s   is the running coupling parameter of QCD at scale  in the MS  scheme. Since the Adler

function is a renormalization group (RG) invariant quantity, the expansion (9)  can be resummed with the

choice 2 2Q

2
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where (1)n nK d . The known coefficients in the MS  scheme, for three active quarks ( 3fn  ), have the

values [4]

0 1 2 3 41, 1.63982, 6.37101, 49.07570.K K K K K     (11)

The second term in (8) corresponds to the higher-dimension ( d 2 ) OPE contribution to the correlation

function

(1) 2
OPE

1,2...

( )
( ) | ,

( )
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k
k
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 
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where 2 ( )kC s , 1,2...k   stand for the effective condensate combinations. They depend on s via ( )s s . Up

to logarithmic corrections, proportional to 2
s
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(0) (1) 2
2 2 2 ( )k sk kC C C m   , (13)

where / 2 2k d   (the dimension-two term is tiny and can safely be neglected). The coefficients ( )
2
i
kC  are

scale invariant quantities. The third term in (8) stands for the non-perturbative contributions that are invisible

in the OPE. They are referred to as “duality violations” [5]. No systematic method is known to calculate the
duality violations. Recently, to describe this effect in  decays a physically motivated model was suggested

(see [15] and the literature therein).

Let us insert in the FESR (7) a spectral weight ( )klw s . Taking into account the prescription (1) we can

rewrite the FESR as follows

0
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, (14)

here we assume that 2
0 cs m s  . Depending on the  method used (FOPT or CIPT) we must use, on the right

of (14), the series expansion (9) or (10) respectively. To distinguish the new approach from the conventional

one, in this work we will employ the abbreviations FOPT+ and CIPT+. Note that, on the right hand side of eq.

(14), we have neglected the OPE and duality violating contributions  to the Adler function. Let us explain this

point. It follows from eq. (13) that the integrated leading order power suppressed OPE contributions will

cancel in the difference between two terms on the right of (14), while the integrated duality violating term (for

a given klw  weight) may become negligible at some special values of cs  referred to as duality points [16]. WeWe

will assume that cs  is a duality point. Further advantage of the representation (14) is that, in the case of

CIPT+, the non-physical contributions coming from the “Landau singularity” of the running coupling are also

eliminated in the difference [11]. Note that each of the klw  FESRs given in (14) connects the parameters cs

and   ( 3    being the QCD scale parameter in the MS  scheme for 3fn   quark flavours). A further

important constraint on the parameters is imposed by the dimension-two FESR [14]. In the vector channel the

dimension-two FESR reads

c
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| |
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th

s
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s z s

z s
s ds D z dz

i z



  . (15)

 Let us point out that we identified the duality radius cs  in the FESR (15) with the continuum threshold

entering in the FESR (14). In our analysis, we use the recently revised and updated ALEPH data for non-

strange vector (V) spectral distribution measured in hadronic  decays [3]. The updated and corrected data

are publicly available (see literature in [3]). The input values from the ALEPH Collaboration are

1.77682 0.00016 GeV,

B 0.17818 0.00032,

1.0198 0.0006,

| V | 0.97418 0.00019,

e

EW

ud

m

S

 

 

 

 



here Be  denotes the electronic branching fraction, EWS  is an electroweak correction and | V |ud  represents

the flavor mixing matrix element. The new ALEPH data for the invariant mass distributions are organized in

bins with variable width. The bin, number k, is centered at sbin(k) and has the width dsbin(k). The highest bin
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is centered at sbin(80)=3.3375> 2m . The invariant mass distribution sfm2(k) is related to the vector spectral

function by

2

1 2

2( )
v ( ( )) ,

6 | V | 100B ( ( )) ( )ud EW e T

m sfm k
sbin k

S w sbin k dsbin k
 

where 2 2 2( ) (1 / ) (1 2 / )Tw s s m s m     is the kinematic weight. The hadronic integrals on the left hand

sides of FESRs (14) and (15) are computed in the standard fashion by using the rectangle rule:

0
0

cc

c 0 1 1( , ) ( )v ( ) ( ( ))v ( ( )) ( ).
s k

w
ex

ks

I s s w s s ds w sbin k sbin k dsbin k 

A particular klw  FESR from (14) will be compatible with the OPE condition (15) if the parameters satisfy the

following system of equations

1 c 1 c

2 c 2 c

( , ) ( ) | ,

( , ) ( ) | ,

kl kl
ex

ex

s I s

s I s

  

   (16)

where the functions 1 c( , )kl s   and 2 c( , )s   stand for the QCD parts of the sum rules (14) and (15)

respectively, while 1 c( ) |kl
exI s  and 2 c( ) |exI s  denote the corresponding weighted integrals over the hadronic

data. In general the system of equations (16) has several solutions. To select admissable solutions, we

impose the following constraints on the expected values of the parameters

2 2
c1 GeV ,s m   (17)

0.280 GeV GeV,    (18)

with these constraints the system (16) has a unique solution. The bound (17) guarantees that pQCD can

safely be used on the circle c| |s s , while the most of determinations of the strong coupling constant from

the  decays [17] satisfy the constraint (18). In numerical calculations, we employ the RG equation at four-

loop order in the MS  scheme. As in [11,12] we use a very accurate analytic approximation to the four-loop

order running coupling determined in terms of the Lambert W function (for details see [18]). We employ the
3N LO  order approximation to the Adler function. The relevant coefficients are given in (11). To determine

the errors on the parameters, we use the system of equations (16) together with the covariance matrices

provided by ALEPH [3]. In this paper we omit the cumbersome details of the error calculations. Relevant

formulas for the error analysis can be found in the Appendix of [11].

We have solved numerically the system (16) for several klw  weight functions. The results obtained by

using the FOPT+ and CIPT+ approaches are presented in Tables 1 and 2 respectively. Looking at the numbers

in Tables 1 and 2 one sees that the FOPT+ and CIPT+ estimates for the continuum threshold cs , for a particular

klw  FESR, are very close. In contrast to this, the FOPT+ scheme predicts systematically smaller values for the

strong coupling constant. This issue is well known. Different ways of performing the RG resummation lead to

differing results [2,3,7,8,13-17]. The numerical results for s  obtained from different klw  FESRs (within the

same resummation scheme) are in good agreement within the errors. The experimental uncertainties on the

parameters, obtained within the two resummation schemes, are found to be almost equal.
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As our best values for 2( )s m , we take the values obtained from the 00w  FESR

2
FOPT

( ) | 0.298 0.012 | ,s exm    (19)
2

CIPT
( ) | 0.322 0.011 | .s exm    (20)

Our determinations (19) and (20) are in good agreement with the 4N LO  order FOPT- and CIPT

determinations of [15] obtained from the same data using V channel 2  fits. Comparing our FOPT+ result (19)

with the FOPT result from Ref. [15], we see that the predicted central values for the coupling constant in the two

determinations are practically the same. The  errors quoted in [15] are also close to those given in (19)-(20).

To conclude, we have extracted  numerical values for the strong coupling constant from the revised

ALEPH non-strange vector data. We have extended the analysis method employed in our previous publica-

tions [11,12] to the FESRs involving the particular class of weights, the “spectral weights” ( )klw s . A valuable

feature of the new approach to the determination of the coupling is that it enables us to minimize the

“contamination” of the extracted values of 2( )s m  from non-perturbative effects and the “Landau pole”

contributions. We performed several independent determinations of 2( )s m  using different klw  FESRs

augmented with the dimension-two sum rule. The results obtained within the FOPT+ and CIPT+ resummation

schemes are separately presented. Performing evolution of the s  values (19) and (20) to the 0Z -mass scale,

we obtain:

2
FOPT

( ) | 0.1158 0.0016 | 0.0005 | ,s z ex evM     (21)

2
CIPT

( ) | 0.1189 0.0013 | 0.0005 | .s z ex evM     (22)

We remark that the CIPT+ value in (22) is in good agreement with the recent world summary of the

determinations of the strong coupling constant [17].

klw 2
c GeVs 3 GeV

fn  2( )s m

00w

10w

11w

12w

13w

1.69 0.03
1.72 0.02
1.72 0.03
1.69 0.03
1.69 0.03

0.303 0.024
0.299 0.022
0.299 0.024
0.303 0.024
0.306 0.028

0.298 0.012
0.296 0.011
0.296 0.012
0.298 0.012
0.299 0.014

Table 1. Numerical results for the parameters obtained from klw  FESRs combined with the dimension-two

OPE condition and using FOPT+. The errors are given from the experimental uncertainties only

Table 2. Numerical results for the parameters  obtained from klw  FESRs combined with the dimension-two

OPE condition and using CIPT+. The errors are given from the experimental uncertainties only

klw 2
c GeVs 3 GeV

fn  2( )s m

00w

10w

11w

12w

13w

1.70 0.03
1.73 0.03
1.72 0.03
1.70 0.03
1.68 0.04

0.349 0.021
0.339 0.019
0.344 0.020
0.348 0.022
0.358 0.025

0.322 0.011
0.316 0.010
0.319 0.011
0.321 0.011
0.327 0.013
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fizika

Zlieri urTierTmoqmedebis mudmivas gansazRvra 
leptonis adronuli daSlebidan dispersiuli
meTodis gamoyenebiT

b. maRraZe

ivane javaxiSvilis sax. Tbilisis saxelmwifo universiteti
a. razmaZis sax. maTematikis instituti, Tbilisi, saqarTvelo

(warmodgenilia akademiis wevris a. kvinixiZis mier)

naSromSi gansazRvrulia Zlieri urTierTmoqmedebis s mudmivas ricxviTi mniSvneloba
 leptonis adronuli daSlebis Seswavlis safuZvelze. gamoyenebulia ALEPH
kolaboraciis ganaxlebuli da Sesworebuli monacemebi veqtoruli araucnauri speqt-
raluri funqciisaTvis. kvark-adronuli dualoba moTxovnilia energiis kvadratis cvla-

dis qvemodan SemosazRvrul areSi  c 
2s s m , sadac cs  perturbaciuli kvanturi qromo-

dinamikis zRurblia. am intervalSi gamoyenebul iqna modificirebuli sasrul energiul

jamTa wesebi, Cawerili klw (s)  “speqtraluri woniTi funqciebiT”, romlebic gansazRvraven
masis invariantuli ganawilebis funqciis speqtralur momentebs. moTxovnilia  TiToeuli
am jamTa wesis Tavsebadoba  jamTa wesTan,  romelic aRwers kiralur zRvarSi d=2

ganzomilebis operatoris ganulebis pirobas. miRebul iqna s mudmivas da cs  parametris

damoukidebeli Sefasebebi sxvadasxva klw  jamTa wesebis safuZvelze. miRebuli ricxviTii

Sefasebebi kargad Tavsebadia erTmaneTTan. miRebulia: 2( ) s exm = 0.322 0.011  konturiT

gaumjobesebul SeSfoTebis TeoriaSi da 2( ) s exm = 0.298 0.012  fiqsirebuli rigis
SeSfoTebis TeoriaSi.
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