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ABSTRACT. Weextract numerical valuesfor thestrong coupling constant a_from therevised ALEPH
t decay data for the non-strange vector hadronic spectral function. The distinguished feature of our

procedur eisthat we employ theglobal quark-hadron duality in thebounded below region, s, <s< rnt2 ,

where s. istheonset of theperturbative QCD continuum. On thisinterval, we construct the modified

Finite Energy Sum Rules (FESRs) using the “spectral weights” w,, (s) (k,I=1,2..) associated with the

spectral momentsof theinvariant massdistribution. These sum rulesare used in conjunction with the
dimension-two sumrulevalidin thechiral limit. Wehave perfor med sever al deter minationsof thestrong

coupling constant a_ and the continuum threshold s;, combining different w,, based FESRswith the
dimension-two FESR. Thenumerical valuesfor thestrong coupling constant from different determinations

arefound tobein good agreement. Weobtain, in the MS scheme, thevalues ocs(mf) =0.322+0.011,,

using adisper sivemodification of Contour I mproved Perturbation Theory and as(mf) =0.298+£0.012,,
using Fixed Order Perturbation Theory. © 2017 Bull. Georg. Natl. Acad. Sci.
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Theinclusive hadronic decays of the t-lepton provideanideal system to study quantum chromodynamics
(QCD) at low and moderate energies (seethe pioneering work [1] and the literature therein). The accuracy of
the experimental data for various observables of the t-lepton system is steadily improving [2,3]. On the
theoretical side, very accurate formulas are available. The relevant theoretical quantity, the Adler function,

has been cal culated in perturbation theory up to order ag [4]. The small non-perturbative corrections to the

observables are under control within the Operator Product Expansion (OPE). Confronting the perturbative
QCD (pQCD) predictionswith the experimental data, one may determine the fundamental and non-perturbative

parameters of the theory. In particular, the precise determination of the strong coupling constant, as(rrf) ,

from non-strange t decays has been the subject of active investigations in recent years [1-5].
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The central theoretical quantity of interest in these decays is the hadronic spectral function related with
the two point correlator of hadronic currents. The correlator is approximated in perturbation theory supple-
mented with the OPE. The QCD predictions can be confronted with the time-like t decay data owing to the
notion of the quark-hadron duality. An exhaustive review on the duality can be found in [5]. The duality is
implemented via the Finite Energy Sum Rules (FESRS) [6]. The FESRs are derived from Cauchy’s theorem
using the analytical properties of the hadronic current-current correlator. Analyticity and the renormalization
group (RG) invariance cannot be combined unambiguoudly. Usually, two approaches are used. They are
referred to asFixed Order Perturbation Theory (FOPT) [1] and Contour Improved Perturbation Theory (CIPT)
[7,8]. It should be remarked that the predictions obtained within CIPT are deteriorated due to the non-
physical “Landau singularities”, which are present in the perturbative running coupling [9]. The dispersive or
analytic modifications of pQCD, developed in past years[9,10], are free from thisinconsi stency.

The present work isthe continuation of works[11,12], where we have analyzed the high precision hadronic
1-decay datafrom the ALEPH [2] collaboration using anew dispersive approach. This approach is based on
the “semi-experimental” representation of the hadronic vector spectral function

V1(8) sex= (S = 9)Va(S) lex +a(S—5)Va(S) |pqen - )
where v, (s) |, denotesthe spectral function measured on the experiment and V1(S) |pacp isthe corresponding
pQCD expression. The parameter s; is the so-called continuum threshold, the minimal value of the energy
squared above, which we trust pQCD. This parameter should be bounded above 0< s, < nf (m being the
massof thet lepton). Otherwise, s, must belarge enoughfor pQCD to bevalid. From (1) onecan derivemodified

FESRs which relates the weighted dataintegral's over the bounded below region s, <s< s, = rqz with the

corresponding QCD  expressions. In previous works [11,12], we employed a modified FESR involving the
kinematic weight function. In the present work, we extend the same approach to the FESRs involving the
welghts determining spectral moments of the hadronic invariant mass distribution [ 13]

k+2 |
1 S S S
h ax ) = 1_ 1 2 ’
¥ (8 ) snax( snaxJ (snaxM+ smax} @

where Sy = n]z and k,l =1,2...The purpose of thiswork isto examine the compatibility of these FESRs
with the dimension-two FESR, the sum rule which isfulfilled in the chiral limit because of the absence of the
dimension d=2 operator in the OPE of the correlator [14].

The basic object of the theoretical calculation is the two point correlator of hadronic non-strange vector
currents:

M (67) =1 [ X6 (01T (VX (X)) 10)d*x = (=G &7 + G TP (@) + GG 1O (@), (3

where V,(X) = G(x)gmd(x) is the vector current, the superscripts (1) and (0) label the spin. For the non-

strange vector-vector correlator the spin zero component o (%) isnumeri cally negligible. Theimaginary
part of e (9%) is connected with the measured vector spectral function v, (s)

vy(s) = 2p ImIT¥ (s+i0). @
The exact non-perturbative correlation function is analytic in the whole complex s-plane except the cut
running along the positive real axis. Using this fact one obtains from Cauchy’s theorem the FESR:

Bull. Georg. Natl. Acad. Sci., vol. 11, no. 3, 2017



62 Badri Magradze

S
j W(s)v,(s)ds = ip 95 w(s) [19 (s)ds, ®

Sh [sl=o
where s, isthe hadronicthreshold and w(s) isany analytic functionin |s|< M with M > s,. Theintroduc-
tion of the Adler function

d
D(-%) = ~4p*q’ ?H(l) (@) ©)
alowsusto rewritethe FESR asfollows:
S
[ Wy (9ds = L $ WD 5 gr, @
Sh 4pi lzZ=% z

where z=Q% = —¢2 and Wl(z)zj.w(z)dz.
S

For sufficiently large s, the right hand sides of (5) and (7) can be calculated in pQCD. The QCD expression
for [1%(9?) can be represented as:
(@) lgeo =1 (@) lpr +T1%(0) lope +11% (%) Iy , ®

where 1% (qz) lpr stands for the pure perturbation theory approximation to the correlation function. The
perturbation theory approximation to the Adler function reads

D(Q?) |pT:Zdn(QZ/nF)£%”‘Z)] : ©
n=0

as(rr12) is the running coupling parameter of QCD at scale min the MS scheme. Since the Adler
function is a renormalization group (RG) invariant quantity, the expansion (9) can be resummed with the

choice nf =Q?

2 n
D@ lr=Y K, (%} , (10
n=0

where K, =d, () . The known coefficients in the MS scheme, for three active quarks (n; =3), have the
values[4]
Ko =K, =1 K, =1.63982, K, =6.37101, K, = 49.07570. 1)

The second term in (8) corresponds to the higher-dimension (d > 2) OPE contribution to the correlation
function

1P(9) lope = Z Cal9) (12)

k=12... (-9
where C,, (s), k =1,2... stand for the effective condensate combinations. They depend onsvia a4(s) . Up

to logarithmic corrections, proportional to as2
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Cy =Cfy +CRas(mf), 13
where k=d /2> 2 (thedimension-two termistiny and can safely be neglected). The coefficients Cgk) are

scaleinvariant quantities. Thethird termin (8) standsfor the non-perturbative contributionsthat areinvisible
in the OPE. They are referred to as “duality violations” [5]. No systematic method is known to calculate the
duality violations. Recently, to describe this effect int decays a physically motivated model was suggested
(see[15] and the literaturetherein).

Let usinsert in the FESR (7) a spectral weight w (S) . Taking into account the prescription (1) we can
rewritethe FESR asfollows

Wy (-2)
z

S‘) —
[ M@ bcds=——| [ %4002 by oy - | D@)ler dz|, (14
S P, 2

lz=s;
herewe assumethat s, = mz > s, . Depending onthe method used (FOPT or CIPT) we must use, ontheright

of (14), the seriesexpansion (9) or (10) respectively. To distinguish the new approach from the conventional
one, inthiswork wewill employ the abbreviations FOPT* and CIPT". Notethat, on theright hand side of eq.
(14), we have neglected the OPE and duality violating contributions to theAdler function. Let usexplainthis
point. It follows from eq. (13) that the integrated leading order power suppressed OPE contributions will
cancel inthe difference between two termson theright of (14), whiletheintegrated duality violating term (for

agiven wy weight) may become negligibleat some special valuesof s, referredto asduality points[16]. We
will assume that s, is a duality point. Further advantage of the representation (14) is that, in the case of
CIPT", the non-physical contributions coming from the “Landau singularity” of the running coupling are also
eliminated in the difference [11]. Note that each of the w,, FESRsgivenin (14) connectsthe parameters s,

and A (A = A5 being the QCD scale parameter in the MS scheme for n¢ =3 quark flavours). A further

important constraint on the parametersisimposed by the dimension-two FESR [14]. In the vector channel the
dimension-two FESR reads

S
[uok, ds:ﬁ $ Z+ZS° D(Ddz 5
Sh zl=s;

Let us point out that we identified the duality radius s, in the FESR (15) with the continuum threshold
entering in the FESR (14). In our analysis, we use the recently revised and updated ALEPH data for non-
strange vector (V) spectral distribution measured in hadronic t decays[3]. The updated and corrected data
arepublicly available (seeliteraturein[3]). Theinput valuesfrom the ALEPH Collaboration are

m =1.77682+0.00016 GeV,
B, = 0.17818+0.00032,

Sgy =1.0198+0.0008,

|V 4 = 0.97418+0.00019,

here B, denotes the electronic branching fraction, Sz, isan electroweak correctionand |V 4 | represents

the flavor mixing matrix element. The new ALEPH datafor the invariant mass distributions are organized in
binswith variablewidth. The bin, number k, is centered at shin(k) and hasthe width dsbin(k). The highest bin
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iscentered at shin(80)=3.3375> rqz . Theinvariant mass distribution sfm2(k) isrelated to the vector spectral
function by

mPsfm2(k)
6|V ? Sew 100B Wi (sbin(k))dsbin(k) '

vy (shin(k)) =

where w; (s) = (1-s/nf)?(1+2s/nf) is the kinematic weight. The hadronic integrals on the left hand
sides of FESRs (14) and (15) are computed in the standard fashion by using the rectangle rule:

s° ko
I (S S) = J‘ w(s)v,(s)ds = Zw(sbi n(k))v, (sbin(k))dsbhin(k).
S ke

A particular w, FESR from (14) will be compatiblewith the OPE condition (15) if the parameters satisfy the
following system of equations

DY (5,A) = 11 () lex:
D,(5,A) = 15(8) s

where the functions cD'l" (s:,A) and @,(s,,A) stand for the QCD parts of the sum rules (14) and (15)

(16)

respectively, while IlkI () lx @nd 1,(s;) lex denote the corresponding weighted integrals over the hadronic
data. In general the system of equations (16) has severa solutions. To select admissable solutions, we
impose the following constraints on the expected values of the parameters
1GeV?<s <np, 17
0.280 GeV < A £0.420 GeV, (18
with these constraints the system (16) has a unique solution. The bound (17) guarantees that pQCD can
safely be used on the circle s=|s; |, while the most of determinations of the strong coupling constant from
the t decays [17] satisfy the constraint (18). In numerical calculations, we employ the RG equation at four-
loop order in the MS scheme. Asin [11,12] we use avery accurate analytic approximation to the four-loop
order running coupling determined in terms of the Lambert W function (for details see [18]). We employ the
N3LO order approximation to the Adler function. The relevant coefficients are givenin (11). To determine
the errors on the parameters, we use the system of equations (16) together with the covariance matrices

provided by ALEPH [3]. In this paper we omit the cumbersome details of the error calculations. Relevant
formulasfor the error analysis can be found in the Appendix of [11].

We have solved numerically the system (16) for several wy, weight functions. The results obtained by
using the FOPT* and CIPT* approaches are presented in Tables 1 and 2 respectively. Looking at the numbers
in Tables 1 and 2 one seesthat the FOPT* and CI PT* estimatesfor the continuum threshold s, , for aparticular
Wy FESR, arevery close. In contrast to this, the FOPT* scheme predicts systematically smaller valuesfor the
strong coupling constant. Thisissueiswell known. Different waysof performing the RG resummation lead to
differing results[2,3,7,8,13-17]. Thenumerical resultsfor a, obtained from different w, FESRs(withinthe

same resummation scheme) are in good agreement within the errors. The experimental uncertainties on the
parameters, obtained within the two resummation schemes, are found to be almost equal.
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Table 1. Numerical results for the parameters obtained from W,y FESRs combined with the dimension-two
OPE condition and using FOPT". The errors are given from the experimental uncertainties only

w, s, GeV? ny=3 GEV a,(m?)

Wy, 1.69+0.03 0.303+£0.024 0.298+0.012
W, 1.72+0.02 0.299+0.022 0.296£0.011
w, 1.72£0.03 0.299+0.024 0.296+£0.012
W, 1.69+0.03 0.30340.024 0.298+0.012
Wi, 1.69+0.03 0.306+0.028 0.299+0.014

Table 2. Numerical results for the parameters obtained from W, FESRs combined with the dimension-two

OPE condition and using CIPT". The errors are given from the experimental uncertainties only

w, s, GeV’® x 3 GEV a,(m?)

Wy 1.70+0.03 0.349+0.021 0.3224+0.011
Wi, 1.73+£0.03 0.339+£0.019 0.316£0.010
W, 1.7240.03 0.344+0.020 0.319+0.011
Wi, 1.70+0.03 0.348+0.022 0.321+£0.011
W, 1.68+£0.04 0.358+0.025 0.327+£0.013

Asour best values for a(mf?) , we take the values obtained from the wy, FESR
a (M) | opre = 0.298+0.012],,, 19
a (M) |g;pps = 0.322:£0.011,, . (20
Our determinations (19) and (20) are in good agreement with the N*LO order FOPT- and CIPT

determinations of [ 15] obtained from the same datausing V channel ¢ 2 fits, Comparing our FOPT* result (19)

withthe FOPT result from Ref. [15], we seethat the predicted central valuesfor the coupling constant in the two

determinations are practically the same. The errorsquoted in[15] are also closeto those given in (19)-(20).
To conclude, we have extracted numerical values for the strong coupling constant from the revised

ALEPH non-strange vector data. We have extended the analysis method employed in our previous publica-

tions [11,12] to the FESRs involving the particular class of weights, the “spectral weights” wy (s) . A valuable
feature of the new approach to the determination of the coupling is that it enables us to minimize the

“contamination” of the extracted values of a (m?) from non-perturbative effects and the “Landau pole”
contributions. We performed several independent determinations of a (nf) using different w, FESRs
augmented with the dimension-two sum rule. The results obtained within the FOPT* and CIPT* resummation

schemes are separately presented. Performing evolution of the a ¢ values(19) and (20) tothe Z° -massscale,
we obtain:

a4(M?) | opr = 0.1158:+ 0.0016 |, £0.0005 ., 1)

ag(M?) |gpy- = 0.1189+ 0.0013,, +0.0005 |, . @)

We remark that the CIPT* value in (22) is in good agreement with the recent world summary of the
determinations of the strong coupling constant [17].
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