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ABSTRACT. A solution of the Guzman's problem on possible values of upper and lower derivatives
is given for the class of translation invariant and product type differentiation bases formed by n-
dimensional intervals. Namely, the bases from the mentioned class are characterized, for which
integral means of a summable function can boundedly diverge only on a set of zero measure. © 2018
Bull. Georg. Natl. Acad. Sci.
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1. Definitions and notation. A family B of open bounded and non-empty subsets of R" is called a
differentiation basis (briefly: basis) if for every x e R" there exists a sequence (R,) of sets from B such
that xe R, (k eN) and kIim diamR, =0.

—0
For a basis B the family of all sets from B containing the point x will be denoted by B(X).

Let B be a basis. For f e L(R")and xeR", the upper and lower limits of the integral means
1
IR
derivatives with respect to B of the integral of f at the point x, and are denoted by Dg (J. f,x) and

IR f, where R is an arbitrary set from B(x) and diam R — 0, are called the upper and the lower

Dg (I f,X), respectively. If the upper and the lower derivatives coincide, then their combined value is
called the derivative of J. f atthe point x and is denoted by Dg (I f,x). We say that B differentiates '[ f

(or I f is differentiable with respect to B) if Dy (J. f,x) =[_)B(I f,x)=f(x) for almost all xeR". If

this is true for each f in a class of functions F < L(R") we say that B differentiates F.
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Denote by I =I(R") the basis consisting of all n -dimensional intervals. Differentiation with respect

to | is called the strong differentiation.
A basis B is called:
e translation invariant if for every ReB and atranslation T:R" - R" we have T(R)eB;

e homothety invariant if for every Re B and ahomothety H :R" —R" we have H(R) € B;

e formed by sets fromaclass A if BCA;
e convex if itisformed by convex sets;
e density basis if B differentiates the integral of the characteristic function of an arbitrary
measurable bounded set E c R".
Note that each homothety invariant basis is translation invariant also.
In what follows the dimension of the space R" is assumed to be greater than 1.
If B is a translation invariant and convex basis then for every function f € L(R") we have

QB(If,x)S f(x)sﬁB(J'f,x)
for almost every x € R". Indeed, there exists a translation invariant basis B' < B for which B'(0) ={R, },
where R, o R, >--- and diam R, — 0. For the basis B' it is valid Vitali type covering theorem (see [1,
p. 25]). It implies that B' differentiates L(R"). Consequently, for every f e L(R"), the estimations
QB(If,X)SQB.(If,X): f(x):ﬁB.(If,x)sﬁB(If,x) hold almost everywhere.

Let B,,...,B, be bases in R™,...,R™, respectively. The product basis B, x---xB, is defined as the
basis in R™* "™ which consists of all sets R, x---xR, where R, €By,...,R, €B, .

Obviously, the basis I1(R") is the product of n copies of the basis I(R).

The properties of bases with product structure were studied by various authors (see, e.g., [2-4]).

m
Let us say that a collection of sets {R;,...,R,} is a partition of a set R if R =URi and
i=1
R AR;|=0 (=)

Let us call a basis B complete if there are numbers 0<c, <c, <1 with the following property: For
every set R e B thereexistsets R;,...,R;, € B composing a partition of R and such that ¢, <|R;|/|R|<c,
(iel,m).

2. Result. Besicovitch [5] proved that the strong integral means of a summable function of two variables
can boundedly diverge only on a set of zero measure, moreover, for every f e L(]RZ) , both sets

{—oo< DI(RZ)(J.f,.) < f}, {f < ISI(RZ)(I f,) <oo}
have zero measure. An analog of this result for the multi-dimensional case was obtained by Ward [6].
We say that a basis B possesses the Besicovitch property if the sets

{—oo< Da([ 1.9 < f}, {f <E>B(jf,-)<oo}
have zero measure for every f e L(R").

Guzman [7, p. 389] posed the following problem: To what bases can Besicovitch's result be extended,
i.e., what kind of bases the Besicovitch property can possess.

The following theorem gives a solution of the problem for the class of translation invariant and product
type differentiation bases formed by n -dimensional intervals.
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Theorem 1. Let B=B; x---xB, where B,,...,B, are translation invariant bases formed by one-

dimensional intervals. Then the following statements are equivalent:

1. the basis B possesses the Besicovitch property;
2. each among the bases B,..., B, is complete.

The implication 2) =1) was proved in [8]. The converse implication we obtain from the following
result.

Theorem 2. Let B=B; x---xB, where B,...,B, are translation invariant bases formed by one-
dimensional intervals. If some among the bases B,,..., B, isnot complete then there exists a non-negative

function f e L(R") for which
f(x)<I5B(Jf,x)<oo

almost everywhere.

Remark 1. The first example of a translation invariant basis formed by n -dimensional intervals which
does not possess the Besicovitch property was constructed in [9]. Note that the basis B constructed in [9]
is not of product structure.

Remark 2. A solution of the Guzman's problem for the class of translation invariant bases formed by
n -dimensional intervals is unknown. Moreover, the problem is open even for homothety invariant bases
formed by n -dimensional intervals. Note that the last type bases B possess so called weak Besicovitch
property: for each non-negative function f e L(R") both sets

{0 <Dy (I f,)<f}, {f<Dg (I f,-) <} have zero measure. This follows from a result of Guzman

and Menarguez [1, p.106] according to which every homothety invariant and density basis formed by
central-symmetric convex sets possesses the weak Besicovitch property. Generalization of this result is
given in [10].
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