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ABSTRACT. It is proved that the Grothendieck functor and the Swan-Gersten higher algebraic K-
functors of a crossed group ring R[z, o, o] are Frobenius modules. As the corollaries an induction

theorem for this functors and a reduction theorem for finitely generated R[rz,o, o] -projective
modules (if R is a discrete normalization ring) are proved. Under some restrictionson n = (7 :1)
it is shown that finitely generated R[z,o, o] -projective modules are decomposed into the direct sum
of left ideals of the ring R[z,o, p]. More stronger results are proved, whenos =id . © 2018 Bull.
Georg. Natl. Acad. Sci.
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In 1960 R. G. Swan proved [1] that a Grothendieck functor GF(R[z]) of a group ring R[~] is a
Frobenius functor. As a consequence, he proved that for a Dedekind domain R of characteristic 0 and a
finite group 7z any finitely generated projective R[] -module decomposes as a direct sum of left ideals
of R[], if no prime divider of 7T is invertible in R. He also proved that this direct sum may be replaced
by the direct sum of a free R[,z] module and an ideal of R[z] . Swan's results were based on two theorems
having an independent value: on the induction theorem for the functors G (Rz) and K,(R[z]) and on the
“"reduction™ theorem. In 1968 T.Y. Lam [2] proved that K,(R[~]) functor is a Frobenius module over
G (R[#]) and that an induction theorem is valid for K (R[z]). In 1973 A.l. Nemytov [3] proved that
Swan-Gersten algebraic K-functors K (R[z]), n>2 are Frobenius modules over G{(R[z]) and

induction theorems are valid for these functors ([4, 5]). Induction theorems for some kinds of algebraic K-
functors of group rings were obtained in 1986 by K. Kawakubo [6] and in 2005 [7] by A. Bartels and W.
Luck [7].

In this paper we prove (Theoreml) that Swan-Gersten algebraic K-functors K (R[z,o,p]) are
Frobenius modules and generalize an induction theorem for this functors (Theorem 2), where R[~z, o, o]
is a crossed group ring. With the help of induction theorem for K;(R[z,o, p]) a "reduction™ theorem for
finitely generated projective R[7z, o, o] -modules is proved, if R is a discrete valuation ring (Theorem 3)
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Inductive Theorems and the Structure of Projective Modules over Crossed Group Rings 17

and the theorems on the structure of finitely generated projective R[z,o, 0] - and R[z, o] -modules are
obtained, which generalize the above mentioned Swan's theorems.

Let R be a commutative ring with identity, = agroup, o : 7z — AutR a morphism of groups, U(R) a
set of invertible elements of R and p:zxz—>U(R) such a mapping that
(% Y)p(xy,z) = p(y,2)* p(x,yz) . Then a crossed group ring R[z, o, o] ([8, 9]) is a free R-module
with the set of free generates 77 and with multiplication r,xr,x, = 1 p(X, X,)%X, , where X is an
image of X€r via a mapping 7 — R[z,o,0] and r,r,eR. If o(x)=idand p~1 (ie.
p(x,Y) =a(X)a(y)a(xy)™", a:z—>U(R)), then R[z,o,p]=R[x]. Further all modules are the left
modules, M (A) and P(A) denotes respectively categories of finitely generated A-modules and finitely
generated projective A-modules; MR (R[r,o,p]) is a category of finitely generated R-projective
R[z,0, p] -modules; G (R[z,ao,p]) isa Grothendieck group of the category M®(R[z,o, p]) and =
will be always a finite group.

Main results of the paper are Theorems 6 and 7. These theorems were proved by the author in [10-12].
The particular case when p ~ 1 was announced in [12] and its proof was a subject of the author’s doctoral
thesis in 1981. This theorems are similar to the results of Kawakubo [6], which were obtained later in 1986
for some kinds of algebraic K-functors of group rings and particular cases of crossed group rings.

Let G be a category, Rings - a category of rings, G:G —Rings - a contravariant functor,
i"=G(i):G(r) >G(x). If to each morphism i:z'—~z in G corresponds such a morphism
i.:G(z") > G(x) in Rings that Id.=1d and (ij). =i.j. (whenever ij makes sense), then a functor G is
called a Frobenius functor [2] if it satisfies the Frobenius reciprocity formula i.(i'a-b) =a-i.b .

Let Ab be a category of commutative groups. A contravariant functor K:G — Ab is called a
Frobenius module [2] on the Frobenius Functor G if it satisfies the following conditions: (i) K(x) is a
module over G(x); (ii) For each morphism of groups i:z"— 7 a morphism i, : K(z") > K(xz) exists
(whenever ij makes sense) that(ij), =i,J,; (iii) i,(y-i*(@)=0i(y)-a, i,(i (x)-b)=x-i,(b). Here
i"=K(@i), xeG(r), yeG(x), acK(r), beG(x).

Let G(x) denote a category whose objects are all subgroups 7z’ < 2 and morphisms —
monomorphisms i : 7' — 7. Then the functors G; (S[-]) and K, (R[-, o, p]) are contravariant functors
from the category G(r) to the categories Rings and Ab, respectively. It is known [1] that G, (S[x)) is
a Frobenius functor.

Let us denote R* ={r e R|(Vxem)r* =r}.

Theorem 1. Let R” be an algebra over a commutative ring S with identity. Then G (R[-, o, p]) and
K, (R[- 0o, p]), m=0,1,... functors are Frobenius modules on the Frobenius functor G; (S[~]) .

If R”is an algebra over S, then R is a S-algebra. Let us construct a morphism of rings
a:Rz,0,p] = S[7]® Rlz,0,p], a(rX)=X & rX. Then for any S[z]-module M and
R[z,o, o] -module  Pthe module M®,P is a R[r,0,p] -module by the action
riX(M® p) = a(rX)(M® p) = XM rxp . Let us denote such a module by (M ®; P)

Proposition 1. If S[z]-module M is S-projective and R[z, o, o] -module P is R[=z,o, o] -
projective, then (M ®; P) is R[xz, o, o] -projective.

Proposition 2. Let R7” be an algebra over S, 7'<x - a subgroup, M eSz—Mod,
M'eSz'—Mod , P eR[x,0,p]-Mod and P’ eR[x',0, p]—Mod . Then

R[7, 0, p] ® (M'®, P) E<(R[7r,0',p]® M") ®, P>

R[/r‘,o',/)] R[/r‘,o',p]
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as R[z,o, p] -modules.
Theorem 1 follows from Propositions 1 and 2 and results from [13].
Let M be some family of objects from G . Let us denote for 7 €G
K,.(M)= Z{Im(i# K@)y > K@) |i:x'— 7z, 7" e M}.

Let Ac B be abelian groups and n an index of A in B, i.e. nB< A. From Theorem 1 follows the

induction theorem:
Theorem 2. Let c(z) be a set of all cyclic subgroups of group 7. Then K (R[z,0o,p]),, and

Gy (R[7, 0, pl).,, have anindex n* in K (R[z,0,p]) and Gj (R[z,0, p]) respectively for all m>0.
If R is an algebra over a field, then n*> may be replaced by n.

From the theorems above follows the reduction theorem for R[z,o, p] -projective modules:

Theorem 3. Let R be a discrete valued ring with the quotient field K; P,Q e P(R[r,o,p]) and
K®, PzK®,Q as K[r,o, p] -modules. Then P=Q as R[z,o, p] -modules.

Remark. K[z,o0,p] actson K®, P as X(a®p)=a* ®xp.

This theorem was proved by Swan [1] for group rings.

To prove Theorem 3 it suffices to prove the following

Theorem 4. Let k be a field. Then Cartan homomorphis y:K,(k[7, o, pl) = G,(k[z, 0, p]) is
injective.

Theorem 4 itself reduces to the case when the group is cyclic; for cyclic groups Theorem 4 follows from

Theorem 5. Let A be a (honcommutative) principal ideal domain, in which each ideal is bounded. Let
I < A two sided ideal, K,(A/1) and G,(A/l) - Grothendieck groups of the categories pcas1) and

M (A/ 1) respectively. Then Cartan homomorphism y:K,(A/1) —>G,(A/ 1) is injective.

Now we can study the projective R[z,o, o] -modules if R is a Dedekind domain.

Let @ =Ker(o: 7 — Aut(R)) . If o(x)=id, we denote R[r,o, p]'=R[z, p].

Theorem 6. Let R a Dedekind domain charR = 0. Suppose no one prime divider of N is invertible in
Rand (i) R is R™ -projective; (ii) if p e spec(R), p|(n),then o(z)(p) cp; (iii) if p isa prime divider
of the number N, p ep = spec(R) and 7, is a Sylov p- subgroup of 77, then 7z, acts triviallyon R/p

; (iv) p(zx7x) = R™. Then any finitely generated projective R[z,o, p] -module splits in direct sum of left
ideals of the ring R[r,o, o].

In a particular case when o(z) =id , we may prove a stronger result.

Theorem 7. Let R be a Dedekind domain charR =0 . If no one prime divider of n = (7z : 1) isinvertible
in R, then any finitely generated projective R[sz, o] -module is the direct sum of a free R[, o] -module
and a leftideal 1 <= R[7, p]. For any non-zero ideal j — R anideal 1 can be chosen in such a way
that 1 and j would be coprime ideals.

Proof of Theorem 6. It exist such an imbedding of a module P in a free R[z, o, p] -module F that
(P:F)+(n)=R, (P:F),. +nR" =R". Let a,a,,..,a be R[z,0,p] -basis of F. Let us consider a
morphism of R[z,o, p] -modules ¢, : F — R[x,0, p], Zyiai — 1. Since rF c P=1rR[r,0,p]lc |,
thus (P:F)c (1, :R[7, 0, p]) . Therefore from (P:F)+(n)=R follows that (I,:R[z,0,p])+(n)=R.

Thentheideal |, is R[z, o, o] -projective. ¢: P — I, issurjective, therefore P = P'®1,. The theorem
is easy to prove by mathematical induction on rk, (P).

Proof of Theorem 7. Under the conditions of Theorem 7 any module P is isomorphic to a direct sum
Z I, of ideals of R[z, p]; in addition for any nonzero ideal J = R the ideals I; can be chosen in such a

Bull. Georg. Natl. Acad. Sci., vol. 12, no. 1, 2018



Inductive Theorems and the Structure of Projective Modules over Crossed Group Rings 19

way that (I, :R[z, p])+J =R for all i. We may suppose K®&; I, = K[z, p]. Then it is sufficient to
prove the following: let 1,1, € R[z, p] be such a projective ideals that (I, :R[z, p]) and (I, :R[z, p])
are coprimeto J and K&®; I, =K ®, |, =Kz, p]; then |, @1, =Rz, p] @1, where | < R[z, p] is
aleftidealand (I : R[7z, p])+J =R.

Let J,=(l,:R[z, p]). It exist |, = R[z, p] such that I, =1, and(l;:R[z,p])+JJ, =R. Let us
replace |, with I,. Therefore, we may assume that there exist b € (I, :R[z, p]) and b, (I, : R[z, p])
such that b +h,=1. Let F be the free R[x,p]-module with two free generators €,e, and
V=Ilg+le cF.Then A=l +1, and (V : F)+J =R. Itis clear that the elements & =eb +e,b,
and e, =€ —e, are also free generators of F, because € =¢€ +h,e;, e, =e/—-b,e;. But & €V because
b el,, b,el,. Consequently V =R[z, ple] +le, where | ={aeR[x,p]|re, eV}. It is clear also that
(I :R[z, p])+J =R because (I :R[z,p])=(:F).
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