Mathematics

Inductive Theorems and the Structure of Projective Modules over Crossed Group Rings

Giorgi Rakviashvili

Ilia State University, Tbilisi, Georgia

(Presented by Academy Member Hvedri Inassaridze)

ABSTRACT. It is proved that the Grothendieck functor and the Swan-Gersten higher algebraic K-functors of a crossed group ring $R[\pi,\sigma,\rho]$ are Frobenius modules. As the corollaries an induction theorem for this functors and a reduction theorem for finitely generated $R[\pi,\sigma,\rho]$ -projective modules (if R is a discrete normalization ring) are proved. Under some restrictions on $n=(\pi:1)$ it is shown that finitely generated $R[\pi,\sigma,\rho]$ -projective modules are decomposed into the direct sum of left ideals of the ring $R[\pi,\sigma,\rho]$. More stronger results are proved, when $\sigma=id$. © 2018 Bull. Georg. Natl. Acad. Sci.

Key words: crossed group ring, Frobenius modules, induction theorem, algebraic K-functors

In 1960 R. G. Swan proved [1] that a Grothendieck functor $G_0^R(R[\pi])$ of a group ring $R[\pi]$ is a Frobenius functor. As a consequence, he proved that for a Dedekind domain R of characteristic 0 and a finite group π any finitely generated projective $R[\pi]$ -module decomposes as a direct sum of left ideals of $R[\pi]$, if no prime divider of π is invertible in R. He also proved that this direct sum may be replaced by the direct sum of a free $R[\pi]$ module and an ideal of $R[\pi]$. Swan's results were based on two theorems having an independent value: on the induction theorem for the functors $G_0^R(R\pi)$ and $K_0(R[\pi])$ and on the "reduction" theorem. In 1968 T.Y. Lam [2] proved that $K_1(R[\pi])$ functor is a Frobenius module over $G_0^R(R[\pi])$ and that an induction theorem is valid for $K_1(R[\pi])$. In 1973 A.I. Nemytov [3] proved that Swan-Gersten algebraic K-functors $K_n(R[\pi])$, $n \ge 2$ are Frobenius modules over $G_0^R(R[\pi])$ and induction theorems are valid for these functors ([4, 5]). Induction theorems for some kinds of algebraic K-functors of group rings were obtained in 1986 by K. Kawakubo [6] and in 2005 [7] by A. Bartels and W. Luck [7].

In this paper we prove (Theorem1) that Swan-Gersten algebraic K-functors $K_m(R[\pi,\sigma,\rho])$ are Frobenius modules and generalize an induction theorem for this functors (Theorem 2), where $R[\pi,\sigma,\rho]$ is a crossed group ring. With the help of induction theorem for $K_0(R[\pi,\sigma,\rho])$ a "reduction" theorem for finitely generated projective $R[\pi,\sigma,\rho]$ -modules is proved, if R is a discrete valuation ring (Theorem 3)

and the theorems on the structure of finitely generated projective $R[\pi, \sigma, \rho]$ - and $R[\pi, \rho]$ -modules are obtained, which generalize the above mentioned Swan's theorems.

Let R be a commutative ring with identity, π a group, $\sigma: \pi \to AutR$ a morphism of groups, U(R) a invertible elements of R and $\rho: \pi \times \pi \to U(R)$ such $\rho(x,y)\rho(xy,z) = \rho(y,z)^x \rho(x,yz)$. Then a crossed group ring $R[\pi,\sigma,\rho]$ ([8, 9]) is a free *R*-module with the set of free generates π and with multiplication $r_1 \overline{x_1} r_2 \overline{x_2} = r_1 r_2^{x_1} \rho(x_1, x_2) \overline{x_1 x_2}$, where \overline{x} is an image of $x \in \pi$ via a mapping $\pi \to R[\pi, \sigma, \rho]$ and $r_1, r_2 \in R$. If $\sigma(\pi) = id$ and $\rho \sim 1$ (i.e. $\rho(x, y) = \alpha(x)\alpha(y)\alpha(xy)^{-1}$, $\alpha: \pi \to U(R)$, then $R[\pi, \sigma, \rho] \cong R[\pi]$. Further all modules are the left modules, $\underline{M}(A)$ and $\underline{P}(A)$ denotes respectively categories of finitely generated A-modules and finitely generated projective A-modules; $\underline{M}^R(R[\pi,\sigma,\rho])$ is a category of finitely generated R-projective $R[\pi,\sigma,\rho]$ -modules; $G_0^R(R[\pi,\sigma,\rho])$ is a Grothendieck group of the category $\underline{M}^R(R[\pi,\sigma,\rho])$ and π will be always a finite group.

Main results of the paper are Theorems 6 and 7. These theorems were proved by the author in [10-12]. The particular case when $\rho \sim 1$ was announced in [12] and its proof was a subject of the author's doctoral thesis in 1981. This theorems are similar to the results of Kawakubo [6], which were obtained later in 1986 for some kinds of algebraic K-functors of group rings and particular cases of crossed group rings.

Let \underline{G} be a category, \underline{Rings} - a category of rings, $G:\underline{G}\to \underline{Rings}$ - a contravariant functor, $i^*=G(i):G(\pi)\to G(\pi')$. If to each morphism $i:\pi'\to\pi$ in \underline{G} corresponds such a morphism $i_*:G(\pi')\to G(\pi)$ in Rings that $Id_*=Id$ and $(ij)_*=i_*j_*$ (whenever ij makes sense), then a functor G is called a Frobenius functor [2] if it satisfies the Frobenius reciprocity formula $i_*(i^*a\cdot b)=a\cdot i_*b$.

Let \underline{Ab} be a category of commutative groups. A contravariant functor $K:\underline{G}\to \underline{Ab}$ is called a Frobenius module [2] on the Frobenius Functor G if it satisfies the following conditions: (i) $K(\pi)$ is a module over $G(\pi)$; (ii) For each morphism of groups $i:\pi'\to\pi$ a morphism $i_\#:K(\pi')\to K(\pi)$ exists (whenever ij makes sense) that $(ij)_\#=i_\#j_\#$; (iii) $i_\#(y\cdot i^\#(a))=i_*(y)\cdot a$, $i_\#(i^*(x)\cdot b)=x\cdot i_\#(b)$. Here $i^\#=K(i)$, $x\in G(\pi)$, $y\in G(\pi')$, $a\in K(\pi)$, $b\in G(\pi')$.

Let $\underline{G}(\pi)$ denote a category whose objects are all subgroups $\pi' \subseteq \pi$ and morphisms – monomorphisms $i: \pi' \to \pi$. Then the functors $G_0^S(S[-])$ and $K_m(R[-,\sigma,\rho])$ are contravariant functors from the category $\underline{G}(\pi)$ to the categories \underline{Rings} and \underline{Ab} , respectively. It is known [1] that $G_0^S(S[\pi])$ is a Frobenius functor.

Let us denote $R^{\pi} = \{r \in R \mid (\forall x \in \pi)r^x = r\}$.

Theorem 1. Let \mathbb{R}^{π} be an algebra over a commutative ring S with identity. Then $G_0^R(R[-,\sigma,\rho])$ and $K_m(R[-,\sigma,\rho])$, m=0,1,... functors are Frobenius modules on the Frobenius functor $G_0^S(S[\pi])$.

If R^{π} is an algebra over S, then R is a S-algebra. Let us construct a morphism of rings $\alpha: R[\pi, \sigma, \rho] \to S[\pi] \otimes_S R[\pi, \sigma, \rho]$, $\alpha(r\overline{x}) = \overline{x} \otimes r\overline{x}$. Then for any $S[\pi]$ -module M and $R[\pi, \sigma, \rho]$ -module P the module $M \otimes_S P$ is a $R[\pi, \sigma, \rho]$ -module by the action $r\overline{x}(m \otimes p) = \alpha(r\overline{x})(m \otimes p) = \overline{x}m \otimes r\overline{x}p$. Let us denote such a module by $\langle M \otimes_S P \rangle$

Proposition 1. If $S[\pi]$ -module M is S-projective and $R[\pi, \sigma, \rho]$ -module P is $R[\pi, \sigma, \rho]$ -projective, then $\langle M \otimes_S P \rangle$ is $R[\pi, \sigma, \rho]$ -projective.

Proposition 2. Let R^{π} be an algebra over S, $\pi' \subseteq \pi$ - a subgroup, $M \in S\pi - \underline{Mod}$, $M' \in S\pi' - \underline{Mod}$, $P \in R[\pi, \sigma, \rho] - \underline{Mod}$ and $P' \in R[\pi', \sigma, \rho] - \underline{Mod}$. Then

$$R[\pi,\sigma,\rho] \otimes_{R[\pi,\sigma,\rho]} \langle M' \otimes_{S} P \rangle \cong \langle (R[\pi,\sigma,\rho] \otimes_{R[\pi,\sigma,\rho]} M') \otimes_{S} P \rangle$$

18 Giorgi Rakviashvili

as $R[\pi, \sigma, \rho]$ -modules.

Theorem 1 follows from Propositions 1 and 2 and results from [13].

Let M be some family of objects from \underline{G} . Let us denote for $\pi \in \underline{G}$

$$K_{\pi}(M) = \sum_{\pi', i} \{ \operatorname{Im}(i_{\#} : K(\pi') \to K(\pi)) \mid i : \pi' \to \pi, \pi' \in M \}.$$

Let $A \subseteq B$ be abelian groups and n an index of A in B, i.e. $nB \subseteq A$. From Theorem 1 follows the **induction** theorem:

Theorem 2. Let $c(\pi)$ be a set of all cyclic subgroups of group π . Then $K_m(R[\pi,\sigma,\rho])_{c(\pi)}$ and $G_0^R(R[\pi,\sigma,\rho])_{c(\pi)}$ have an index n^2 in $K_m(R[\pi,\sigma,\rho])$ and $G_0^R(R[\pi,\sigma,\rho])$ respectively for all $m \ge 0$. If R^{π} is an algebra over a field, then n^2 may be replaced by n.

From the theorems above follows the **reduction** theorem for $R[\pi,\sigma,\rho]$ -projective modules:

Theorem 3. Let R be a discrete valued ring with the quotient field K; $P,Q \in \underline{P}(R[\pi,\sigma,\rho])$ and $K \otimes_R P \cong K \otimes_R Q$ as $K[\pi,\sigma,\rho]$ -modules. Then $P \cong Q$ as $R[\pi,\sigma,\rho]$ -modules.

Remark. $K[\pi, \sigma, \rho]$ acts on $K \otimes_R P$ as $\overline{x}(\alpha \otimes p) = \alpha^x \otimes xp$.

This theorem was proved by Swan [1] for group rings.

To prove Theorem 3 it suffices to prove the following

Theorem 4. Let k be a field. Then Cartan homomorphis $\chi: K_0(k[\pi, \sigma, \rho]) \to G_0(k[\pi, \sigma, \rho])$ is injective.

Theorem 4 itself reduces to the case when the group is cyclic; for cyclic groups Theorem 4 follows from

Theorem 5. Let A be a (noncommutative) principal ideal domain, in which each ideal is bounded. Let $I \subseteq A$ two sided ideal, $K_0(A/I)$ and $G_0(A/I)$ - Grothendieck groups of the categories $\underline{P}(A/I)$ and $\underline{M}(A/I)$ respectively. Then Cartan homomorphism $\chi: K_0(A/I) \to G_0(A/I)$ is injective.

Now we can study the projective $R[\pi, \sigma, \rho]$ -modules if R is a Dedekind domain.

Let $\omega = Ker(\sigma : \pi \to Aut(R))$. If $\sigma(\pi) = id$, we denote $R[\pi, \sigma, \rho] := R[\pi, \rho]$.

Theorem 6. Let R a Dedekind domain charR = 0. Suppose no one prime divider of n is invertible in R and (i) R is \mathbf{R}^{π} -projective; (ii) if $\mathbf{p} \in \operatorname{spec}(R)$, $\mathbf{p} \mid (n)$, then $\sigma(\pi)(\mathbf{p}) \subseteq \mathbf{p}$; (iii) if \mathbf{p} is a prime divider of the number n, $p \in \mathbf{p} \in \operatorname{spec}(R)$ and π_p is a Sylov p- subgroup of π , then π_p acts trivially on R/\mathbf{p} ; (iv) $\rho(\pi \times \pi) \subseteq R^{\pi}$. Then any finitely generated projective $R[\pi, \sigma, \rho]$ -module splits in direct sum of left ideals of the ring $R[\pi, \sigma, \rho]$.

In a particular case when $\sigma(\pi) = id$, we may prove a stronger result.

Theorem 7. Let R be a Dedekind domain char R=0. If no one prime divider of $n=(\pi:1)$ is invertible in R, then any finitely generated projective $R[\pi,\rho]$ -module is the direct sum of a free $R[\pi,\rho]$ -module and a left ideal $I \subseteq R[\pi,\rho]$. For any non-zero ideal $\mathbf{j} \subseteq R$ an ideal I can be chosen in such a way that I and \mathbf{j} would be coprime ideals.

Proof of Theorem 6. It exist such an imbedding of a module P in a free $R[\pi,\sigma,\rho]$ -module F that (P:F)+(n)=R, $(P:F)_{R^{\pi}}+nR^{\pi}=R^{\pi}$. Let $a_1,a_2,...,a_k$ be $R[\pi,\sigma,\rho]$ -basis of F. Let us consider a morphism of $R[\pi,\sigma,\rho]$ -modules $\varphi_1:F\to R[\pi,\sigma,\rho]$, $\sum_i \mu_i a_i\to \mu_1$. Since $rF\subseteq P\Rightarrow rR[\pi,\sigma,\rho]\subseteq I_1$, thus $(P:F)\subseteq (I_1:R[\pi,\sigma,\rho])$. Therefore from (P:F)+(n)=R follows that $(I_1:R[\pi,\sigma,\rho])+(n)=R$. Then the ideal I_1 is $R[\pi,\sigma,\rho]$ -projective. $\varphi:P\to I_1$ is surjective, therefore $P\cong P'\oplus I_1$. The theorem is easy to prove by mathematical induction on $rk_K(P)$.

Proof of Theorem 7. Under the conditions of Theorem 7 any module P is isomorphic to a direct sum $\sum I_i$ of ideals of $R[\pi, \rho]$; in addition for any nonzero ideal $J \subseteq R$ the ideals I_i can be chosen in such a

way that $(I_i:R[\pi,\rho])+J=R$ for all i. We may suppose $K\otimes_R I_i\cong K[\pi,\rho]$. Then it is sufficient to prove the following: let $I_1,I_2\subseteq R[\pi,\rho]$ be such a projective ideals that $(I_1:R[\pi,\rho])$ and $(I_2:R[\pi,\rho])$ are coprime to J and $K\otimes_R I_1\cong K\otimes_R I_2\cong K[\pi,\rho]$; then $I_1\oplus I_2\cong R[\pi,\rho]\oplus I$, where $I\subseteq R[\pi,\rho]$ is a left ideal and $(I:R[\pi,\rho])+J=R$.

Let $J_1=(I_1:R[\pi,\rho])$. It exist $I_2'\subseteq R[\pi,\rho]$ such that $I_2\cong I_2'$ and $(I_2':R[\pi,\rho])+JJ_1=R$. Let us replace I_2 with I_2' . Therefore, we may assume that there exist $b_1\in (I_1:R[\pi,\rho])$ and $b_2\in (I_2:R[\pi,\rho])$ such that $b_1+b_2=1$. Let F be the free $R[\pi,\rho]$ -module with two free generators e_1,e_2 and $V=I_1e_1+I_2e_2\subseteq F$. Then $A\cong I_1+I_2$ and (V:F)+J=R. It is clear that the elements $e_1'=e_1b_1+e_2b_2$ and $e_2'=e_1-e_2$ are also free generators of F, because $e_1=e_1'+b_2e_2'$, $e_2=e_1'-b_2e_2'$. But $e_1'\in V$ because $b_1\in I_1$, $b_2\in I_2$. Consequently $V=R[\pi,\rho]e_1'+Ie_2'$ where $I=\{a\in R[\pi,\rho]\mid re_2'\in V\}$. It is clear also that $(I:R[\pi,\rho])+J=R$ because $(I:R[\pi,\rho])=(V:F)$.

მათემატიკა

ინდუქციური თეორემები და ჯვარედინ ჯგუფურ რგოლზე პროექციული მოდულების სტრუქტურა

გ. რაქვიაშვილი

ილიას სახელმწიფო უნივერსიტეტი, თზილისი, საქართველო (წარმოდგენილია აკადემიის წევრის ხ. ინასარიძის მიერ)

დამტკიცებულია, რომ $R[\pi,\sigma,\rho]$ ჯვარედინი ჯგუფური რგოლის გროტენდიკის ფუნქტორი და სუონ-გერსტენის უმაღლესი K-ფუნქტორები ფრობენიუსის მოდულებია. შედეგად დამტკიცებულია ამ ფუნქტორებისათვის ინდუქციურობის და რედუქციულობის თეორემები სასრულად წარმოქმნილი $R[\pi,\sigma,\rho]$ -პროექციული მოდულებისათვის, როცა R არის დისკრეტულად ნორმირებული რგოლი. როდესაც R არის დედეკინდის რგოლი, π ჯგუფის რიგზე გარკვეული შეზღუდვებით დამტკიცებულია, რომ სასრულად წარმოქმნილი $R[\pi,\sigma,\rho]$ -პროექციული მოდულები იშლება $R[\pi,\sigma,\rho]$ რგოლის მარცხენა იდეალების პირდაპირ ჯამად. უფრო მლიერი შედეგებია მიღებული, როდესაც $\sigma=id$.

20 Giorgi Rakviashvili

REFERENCES

- 1. Swan R. G. (1960) Induced representations and projective modules. Ann. of Math., 71: 552-578.
- 2. Lam T. Y. (1968) Induction theorems for Grothendieck groups and Whitehead groups of finite groups. *Ann. Scient. Ec. Norm. Super*, **1**: 91-148.
- 3. Nemytov A. I. (1973) $K_n(R\pi)$ kak frobeniusovy moduli nad funktorom, $G_0^R(\pi)$. *Uspekhi Matematicheskikh Nauk*, **28**:187-188 (in Russian).
- 4. Swan R. G. (1970) Nonabelian homological algebra and K-theory. Proc. Symp. Pure Math. (AMS), 17:88-123.
- 5. Gersten S. M. (1971) On the functor *K*₂. *J. of Algebra*, **17**:212-237.
- 6. Kawakubo K. (1986) Induction theorems for equivariant K-theory and J-theory. J. Math. Soc. Japan, 38:173-198.
- Bartels A., Luck W. (2007) Induction theorems and isomorphism conjectures for K- and L-Theory. Forum Mathematicum, 19:1-28.
- 8. Jacobson N. (1943) The theory of rings, New-York.
- 9. Auslander M., Goldman O. (1960) The Brauer group of a commutative ring. Trans. AMS. 97:367-409.
- 10.Rakviashvili G. (1979) Obobshchenie teoremy Artina dlia poluprostykh algebr i induktsionnye teoremy dlia poriadkov i skreshchennykh gruppovykh kolets. *Bull. of the Acad. Sciences of the Georgian SSR.* **96**:25-28 (in Russian).
- 11.Rakviashvili G. (1981) O stroenii proektivnykh modulei nad skreshchennymi gruppovymi kol'tsami. *Bull. of the Acad. Sciences of the Georgian SSR.* **101**:549-552 (in Russian).
- 12.Rakviashvili G. (1982) Induktsionnye teoremy i proektivnye moduli nad skreshchennymi gruppovymi Kol'tsami. *Trudy Tbilisskogo Matematicheskogo Instituta* A. M. Razmadze. Cbornik rabot po algebre, **3**:92-107 (in Russian). 13.Quillen D. (1972) Higher algebraic K-theory, I. Lect. Notes in Math. **341**:85-147.

Received December, 2017