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ABSTRACT. The problems of the action of arbitrarily propagated tension/compression (P) and
shear (S) seismic waves on a "‘rock-support system", being under loading of geostatic gravitational
forces are dealt with in this paper. The rock mass is assumed to be a homogenous, isotropic linearly
deformable medium, simulated applying the apparatus the theory of elasticity. The tunnel liner is
analyzed by methods of strength of materials. It is assumed that the lining is installed after the
excavation at some distance from the tunnel face. Both cases of full-slip and no-slip contact conditions
for rock-support interface are considered. An analytical apparatus is proposed for determination of
internal forces in the tunnel structure undergoing geostatic pressures and affected by seismic P and
S-waves. The numerical examples show that the maximum stresses in the underground structure
imposed by a longitudinal wave may exceed that of a transverse wave; the sum of the stresses after
superposition of static and seismic fields of stress differs greatly from same by shear seismic waves.
Therefore ignoring one of them will decrease the accuracy of calculation and at last will reduce the
safety of the designed structure. © 2078 Bull. Georg. Natl. Acad. Sci.
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In modern literature [1-5] the evaluation procedures for transverse response of tunnel structures was
carried out using either simplified analytical methods, or more complex refined methods, depending on the
degree of complexity of the soil-structure system, subsurface conditions, the seismic hazard level, and the
importance of the structures. In both cases of the simplified or refined methods, calculations of the structure
are carried out only on impact of transverse waves originating common shear deformation. Such a model
derived by Wang [3] may be accurate for free-field conditions, i.e., for tunnels in large overburden areas
where shear waves transfer the most portion of seismic energy and only partially can reflect the actual
stress-strain state of a tunnel during the earthquake.

This problem has been pointed out in recent publication [6] of Kouertzis et al., where is assessed the
effect of secondary P-waves resulting from reflection/refraction of S-waves on the final tunnel lining.
Analytical expressions are used for a circular tunnel internal forces under geostatic stress field, transforming

these to calculate the seismic forces in the liner at the secondary seismic P-wave propagation with a plane
front. This is done by setting maximum free-field normal stress in the P-waves - ( 0, ) instead of the in
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situ vertical component of gravitational stresses (»H ). The lateral pressure (K, yH ) in the P-wave is
ignored as its ratio K, =0. That can be justified in only theoretically possible exceptional cases of site

conditions, for example, if the Poisson's ratio of the rock mass is zero. The geostatic loads on the liner from
rock mass relaxation are also ignored. This assumption is appropriate for an unreinforced tunnel section
constructed with the NATM method in competent rock mass, where the final lining is installed after the
primary lining has reached equilibrium. It experiences only self-weight load and must withstand the
possible additional influences, the seismic loads [6], initial supports provide a seemingly stable opening but
it is known that additional support is required for long term stability then that support must be provided by
the final lining [2: 6-53].

The issues of calculation of the tunnels under the influence of both longitudinal P and transverse S
seismic waves were discussed by Napetvaridze [7], Fotieva [8,9] and others. This group applied a method
of the theory of elasticity [10] for determination of the extreme stresses in the final tunnel support of any
cross-section form under “overpressure” loading. In this case a temporary lining has not been taken into
account and it is considered as a reserve of bearing capacity of the final support.

In both of the above-mentioned cases of the ignoring of primary or secondary lining the value of the
reserve of bearing capacity of the final support may be significant and must be evaluated if it is possible.
Besides it is important the level and character of the existing stress-strain condition of a structure from
geostatic forces at the moment of seismic impact.

Some of the results of early analytical studies of these problems, published monographs in Russian [11-
14], are proposed below in a finalized form of the “excavation loading” scheme, taking in to account the
sequence of the excavation and reinforcing of the opening. The rock mass is assumed as a homogenous,
isotropic linearly deformable medium, simulated by apparatus of theory of elasticity. The tunnel liner is
considered by methods of strength of materials. Both cases of full-slip and no-slip contact conditions for
rock-support interface are considered. The action of arbitrarily directed tension/compression (P) and shear
(S) long waves on a system "rock-support”, being under geostatic loads are considered in this work.
Therefore, the formulae are set out below: at the beginning due to geostatic forces, then from the seismic P
and S waves and finally is made their superposition.

Analysis of Circular Tunnel in the Geostatic Stress Field of Weak Rock Mass
If in situ main geostatic stresses are designated P, and APy the radial and tangential stress components

by the circular line of the prospective tunnel excavation can be represented in polar coordinates as
o, =0.5P,[1+ 1+ (1-4)cos24];

7y = 0.5P; (1-4)sin 26,

where Py is maximum normal geostatic stress; A - in situ stress ratio; @ is polar angle, measured from axis

@)

of maximum normal stress. If in situ stresses are only gravitational Py =yH, A=v/(1-v).

This means that the excavation of the tunnel leads to the removal of the radial and tangential, (1)
stresses. Corresponding equations of radial U, and tangential U, displacements of points of the tunnel

contour of radius R, derived [12] by solution of a plane problem of elasticity theory [10], are given by:
" - PeR(1+v)

. oE [1+A+(3—4v)(1-2)cos2d]; )
Uy =$(3—4v)(1—/1)sin20, @)
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where E is the modulus of elasticity and v is Poisson’s ratio of the rock mass.

Having elastic displacements it is possible to receive expressions for viscous-elastic displacements of a
contour of tunnel buried in weak rock mass. For this, the elastic parameters in these functions must be
replaced by time operators:

E(t)=E/(1+®); @
G(t)=G/[1+3d/2(1+v)];
where: @ = 5/(1—05)'[1_“ is a creep function, t (days counted from the excavation of tunnel) ; ¢ and &

are creep parameters of Abel's kernel [15] what for rock mass vary in limits: «=0.6-0.9; 6=0.5-1.5.
As a result of the interpretation of obtained operator expressions on the Volterra-Rabotnov principle,
equations such as expressions (2), take into account the creep of the rock mass. That gives a possibility to
develop the equations of internal forces in the support depending on the contact conditions, time factor and
location of the lining loading. However, the practical application of these equations is somewhat difficult
in cases when the rheological parameters of the rock mass are not known in advance. Therefore, in this
work in order to simplify the calculations, the effect of decreasing the elastic modulus over time is realized
by using the rock mass modulus of deformation, including all elastic as well as non elastic linear
deformations.

Fig. 1. Scheme of erection of support on a distance f from excavation face (a) and distribution of normal and shear
stresses on the rock-support contact interface (b).

After this simplification, the loads developed per unit length of the support, set at a distance f from the
tunnel face, can be schematically represented in Fig. 1 and written as:
P, =P, +P,c0s20, 5)
T, =T,sin 26, (6)
where the uniform part of contact pressure, i.e. half the sum of the maximum and minimum contact
pressures, forming in the result of rock-support interaction, is given by:
Py (1+4) EF(1-A)
° 2 RXK,+EF
The half-difference of the extreme values of radial contact pressures P, and maximum tangential
contact stress T, at a no-slip conditions on their contact surface:

Y]
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[18E1 h i
2 18E4'| +C(1—h)a)+2K'2
R R
18E, |
R ) ) o

2 = ' 1
2 ,
e 2610, [
R*C C R
where:

E,, h, Fand | are Young’s modulus, thickness, cross-sectional area and moment of inertia per unit
length of liner respectively; A is a dimensionless quantity taking into account the support erecting lag f
from the tunnel face. Its value approximately [12] may be defined as A=1—exp(—0.6f / R) ;

o is a dimensionless quantity that depends on the shear modulus of the rock, G, shear modulus of the
liner, G, and liner thickness, h. For approximate calculations @ can be taken equal to -0.5. A more precise
value of @ can be determined by the expressions obtained from the closed form solution of the contact
problem of the plane [16] with a reinforced circular hole:

w=(a-b)/(a+h),
where: a= (i +1)(n°-n"); n=(R+h)R; x=(3-4v); & =(3-4v);

b= & (3n°—6n*+4n)+x l+z<,E n®+ 1+chE fax] 1)
G G G G

In the expressions (7)-(9) Ky, K'2 and C are functions having physical meaning and dimension of

Winkler’s coefficient. The first of them is the widely used "spring stiffness" [2] for the relationship of

axisymmetric radial displacement of the excavation circular contour with uniform part of contact stresses,
E

Ky = ; 10

® T R(1+v) (10

The functions sz and C are "spring stiffness" for uneven radial and tangential displacements for the no-

slip contact conditions on rock-support interface respectively:

E[S 6v—(4- 6v)a)]
2 R(1+v)(3-4v)

. [ 6v—(4— GV);]

R(1+v)(3-4v)

: (11)

(12)

The normal force, N, , bending moment, M, and radial displacement, U,, for a unit length of the

support in the no slip contact conditions are given by

N, =R[ P, —0.333(P, +2T, )cos 26|, (13)
. IP, R?
M, =——— 2P +T, Jcos26, 14
o= ) (14)
PR? R .
= + 2P, +T, )cos 26. 15
T EF 18E,I( 2 2) (15)
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If full slip on the rock-support interface is possible, only the normal component of the contact stresses
(5) will develop on the support. In this case, the evenly distributed part of the load P, will be expressed by

the same formula (7). The half-difference of the extreme values of radial contact pressures Pz" at a full-slip

contact condition will be given by

. P(1-1) (1-A
Pl 1n) -
Z 41
9E,|
where the function of "spring stiffness"” for uneven radial displacements of rock-support interface at a full-
slip conditions will be given by

. 3E
= R[(1+v)(5-6v)]

The corresponding equations of normal force, bending moment and radial displacement of the unit
length support for full-slip conditions will be respectively:

(A7)

. PR
N9=POR—2Tc0520, (18)
"D2
M, :%—icosze, (19)
. PR’ PR
=——+ cos 26.
"~ EF  9EI (20)

Circular Tunnel Under the Influence of Seismic P and S Waves
The following is based on the generally accepted provision that seismic stresses can usually be considered
as pseudo-static superposition on the existing stresses, because the seismic wave is almost always much
longer than the cross-sectional dimension of the typical underground structure.

Seismic stresses in the rock mass, according to law of energy conservation and wave theory [17] can be
determined by

max
min min

1 1
o =i§7/C1V1; Trmax =i§7/C2V2 (21)

where y - unit weight of the rock mass; V, and V, - maximum velocities of particles from compressive

and shear waves, respectively; C, =4/G/p(1-2v) and C, =a/G/ P - compressive and shear waves
propagation velocities respectively; g - acceleration of gravity.

Consequently, taking into account the condition for the absence of transverse deformations in a plane
wave [17], the components of normal P,;,, AP,, and shear Q, stresses in longitudinal, P and transverse,
S seismic waves are determined by:

1 1
Pin =t -—kyCTy; AR, = — Pin; Qun =T —kyC,T,,. (22)
2r 1-v 2r
where k=a/g - coefficient of seismicity; a is peak ground acceleration as the most common index of the
intensity of strong ground motion at a site [1,2]; T, - dominant rock particles oscillation period (T, =0.5 s
if data is missing).

This formulation is more general and somewhat different from the concept of authors [3,6,18], taking
the assumption A =0, which reflects the uniaxial loading conditions and can correspond to the propagation
of a plane P wave in the theoretically possible particular case when Poisson’s ratio of rock mass, v =0.
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At the long wave seismic impact, concentrated stresses and displacements around the tunnel that have
the main significance for design, are defined using so called quasi static method. Such an approach for a
circular tunnel was analyzed in the works [13.14].

Two contact problems of a circular tunnel were solved for both longitudinal and transverse waves. In
this case the problems are considered in the "overpressure loading” scheme, because, in contrast to the
gravitational field of stresses, seismic waves propagate in the mass where the tunnel already exists.

To obtain expressions of internal forces in a circular liner under the influence of the long seismic waves,
the solution of the problem of action of compressive and shear stresses on "infinite" boundaries of the plane
was used.

The normal, P,,,(P) and shear, T_,,(P) contact stresses on the support in no slip conditions, caused
by only longitudinal wave (Fig.2,a) propagating at an angle « from the vertical, can be written as

P0;+9(P) = POI(din) + Pz.(din) cos2(a +0); (23)
T0;+6 (P)= T2(din) sin2(c +0), (24)
where P, PZ', T, will be expressed by formulae (7)- (9), replacing P, by P, and substituting A= 0,
because of the assumption that tunnel face is now far from the site under consideration and it cannot reduce

the effect of seismic stresses.
At the full slip conditions on the rock-support interface, shear contact stresses T, =0, the evenly

distributed part of the radial contact pressure P, will be expressed by (7) and the half-difference of the
extreme values of radial contact pressures Pz"(din) will be given by (16) when A= 0.

Similarly, the axial forces, bending moments and radial displacements of the support caused by
longitudinal seismic P wave at the no slip and full slip contact conditions can be determined by equations

(13)-( 15) and (17)-( 19) respectively, replacing P, , P,, P, by Py, Pé(din), Py to take the
cos2(0+a) instead of cos26 and A= 0.

a) b)
‘picentre
o Y ~ —

Epicentre
e

m

Hypocenter Hypocenter
Fig. 2. Schema of circular tunnel under long, arbitrarily directed P, longitudinal, (a) and S, transverse, (b) seismic

waves.

In order to obtain a solution to the problem of pure shear at infinity, it is necessary in the formulae for
P wave to replace: Py, by Qu,, (0+a) by (0+a+x/4) , and substitute the value A =-1. As a result

of simple transformations: cos2(a+7z/4)=-sin2a; sin2(a+z/4)=cos2a, the following

expressions are obtained.
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The normal P, ,(Q) and shear T, ,(Q) contact stresses, caused by only transverse seismic wave
propagation at an angle ¢ from the vertical (Fig.2,b), in no slip conditions can be written as

P..0(Q) = =Py Sin2(cx + 0); (25)
T,.0(Q) =Ty COS2(cx + ), (26)
where:
[ 18E,I
Q()m« bRA -C (1 ):|
PZ'(dln) 7 ; (27)
18E4| _c V, 2K,
bR U,
Toainy = ; (28)

18E1 (2K, V), ’
bR* c u;)?

The axial forces, bending moments and radial displacements in the support caused by transverse seismic
Q wave at the no slip conditions are respectively:

' bR/ _, , .
N;..(Q)= ?(Pz(dm) + 2T,y )5IN2(0+ ); (29)
, bR? . _
M. (Q) == (2Psany + To(am )SiN2(0+ ); (30)
. bR* /., .
U,.(Q)= 18EI(2P2(‘"”) + T )SIN2(0+ ). (31)

The pressures on the rock-support interface in full slip conditions will be represented by only radial
contact stresses
9EI IQdin

P” #
bR* K, +9E, |

e (Q)=— sin2(0+a). (32)

The corresponding equations of axial forces, bending moments and radial displacements in the support

caused by transverse seismic Q wave at the no slip conditions are respectively:
1

N7, (Q)=REL, (Q)sin2(0+a), @)
M7 (Q)=—%R2Pg”_ (Q)sin2(0+a), (34)
U,.,(Q)= %I(Q)sin 2(0+a). (35)

Shear waves can cause stretching radial stresses on skew-symmetric Os(¢9+a)§7z/ 2 and
T £(6’+a) <37 /2 parts of the contact surface (Fig.2,b). As noted in the works [6,18] there will take

place a separation on the rock mass-structure interface. This is possible if there are no special bonds between
the rocks and support. Otherwise the axial forces, bending moments and radial displacements (29) - (35)
should be reduced approximately twice. But when the loads of the static field act on the structure, they
could be reduced by tensile contact stresses generated by the transverse waves. This will depend on the
intensity of the static and seismic main stresses and their respective orientation, which will be determined
by the angle o . If the superposed contact stresses are not less than zero, then estimates of equations (29)
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- (35) are valid. Such forces generated from compressive, P and shear, S waves will superpose to forces
under geostatic field of stresses. Further, the extreme meanings of internal stresses and displacements will
be determined by confirmatory analysis of structural mechanics method.

The sequence of calculations by the proposed closed-form solutions and analysis of the obtained results
for specific numerical examples are given in appendix.

CONCLUSIONS

Analytical solutions were developed for determination of influence of both longitudinal
tension/compression (P) as well as the lateral, shear (S) seismic waves on the circular tunnel support being
under the loading of geostatic gravitational forces.

Closed-form solutions are given for underground structures of circular section at significant depth in a
weak rock mass. Problems are considered in the “excavation loading” scheme, taking into account the
sequence of excavation and reinforcing of the opening.

Four functions are proposed for establishing the relationship between uniform and non-uniform radial and
tangential displacements with the corresponding contact stresses forming at the rock-support interaction.
These functions have the physical meaning of "spring stiffness" and dimension of Winkler's coefficient and
take into account the deformation parameters of the rock mass, conditions on contact interface, and the
geometry of the liner profile.

The rock-support interaction problems for underground structure under the gravitational forces are
determined in the “excavation loading” scheme. Assumed is that the lining is installed at some distance
from the tunnel face. Both cases of full-slip and no-slip contact conditions at the rock-support interface are
considered.

Same problems for P and S waves are considered in the "overpressure loading” scheme, because, in
contrast to the geostatic field of stresses, seismic waves propagate when the tunnel already exists.

The examples of numerical modeling, performed by proposed analytical apparatus lead to the
conclusion, that: maximum hoop stress generated by an S-wave in the liner can be greater than that by a P-
wave at low values of the mass modulus, but for greater values of the modulus the maximum internal stress
due to S-waves is smaller than that from P-waves. The difference between them increases with increasing
mass modulus;

Maximum total stresses, that depend on directions of main geostatic stresses and the propagation of
seismic waves, can be formed by superposing geostatic stresses more with P-wave than with S-wave.

All this puts under doubt the widespread current opinion that dominant and critical impact on the tunnel
should be only the transverse waves. The numerical examples show: the maximum stresses in the
underground structure imposed by longitudinal waves may exceed those due to transverse waves; summed
stresses after superposition of static and seismic fields of stress differ greatly from same by shear seismic
waves. Therefore ignoring any of them will decrease the accuracy of calculation.

Appendix

Numerical Verification and Comparative Analyses of Suggested Expressions

For a comparative analysis of the obtained results, the initial data are taken to be the same as used in
the US Technical Manual [2: E-6] for calculating a tunnel of circular section. Input data of the examples
are converted into a metric system and are listed in Table 1.
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Table 1. Input data of the example case study

Rock mass properties

Liner propertie

Modulus of deformation , MPa E

Poisson’s ratio V/
Shear modulus, MPa G

Soil unit weight, MN/m? y

Coefficient of lateral pressure A

Seismicity coefficient k
P-wave stress, MPa. (eq.3.2) Py,

S-wave stress, MPa. (q.3.2 ) Qgin

101.5
0.41
385

0.0217
0.7
0.6

0.34

0.14

Depth of a tunnel location, m H
Modulus of elasticity, MPa E,

Poisson’s ratio v,
Shear modulus, MPa G,

Radius of liner, mR

Thickness of liner, m h
Lining erecting lag, m f , A

Angle of wave propagation, ° &

315
29000
0.25
7900
3.3
0.45

The maximum internal forces of a quasi-static gravitational nature in the liner springline (6’= 7z/2)

section, computed by the proposed expressions and , from various solutions [2] are given in Table 2. The
comparison for the special case when the support is erected directly at the tunnel face (f=0) shows a slight

divergence between them.

Table 2. The maximum internal forces at springline (6= /2) of the lining of quasi static gravitational nature

calculated from various analytical solutions

Analytical Solutions Trast, KN/m Moment, kN m/m

Contact conditions Full slip No slip Differ. % Full slip No slip Differ. %
Einstein and Schwartz [19] 2092 1948 6.9 244 225 7.8
Ranken et al. [20] 1948 1778 8.7 216 234 -8.3
Curtis [21] 1802 1884 -4.5 115 115 0
Proposed expressions 1923 2011 -4.6 158 173 -9.5

The extreme contact pressures, P,

Prin s thrusts, N..., bending moments, M, , and radial

displacements U, ; extreme tangential normal stresses in the springline (6= /2) section of the lining,

Omax + Omin due to: quasi static gravitational forces, P and S - waves, for both contact conditions, calculated

using proposed analytical expressions are given in Table 3.

Table 3. Loads, thrusts and bending moments, stresses and displacements in the lining due to: geostatic, P and

S - waves, for no-slip and full-slip contact condition

Natur Contact Pmax KPa [Pmin KPa |Tmax KPa [Mmax KN [Nmax KN |omax MPa |ominMPa  [Umax cm
condition

Geo-static [No-slip 296 273 50 173 2011 10 -1.2 0.29

P-wave |Full-slip 305 264 0.0 158 1923 9.0 -0.4 0.25
No-slip 294 271 25 91 998 5.0 -0.5 0.17

S-wave  |Full-slip 151 131 0.0 78 951 44 -0.2 0.14
No-slip 14.5 -14.5 63.5 238 177 7.0 -6.2 0.40
Full-slip 28.2 -28.2 0.0 188 57 6.3 -5.8 0.34
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The summed stress fields arising after superposition of geostatic and seismic stresses are formed at
different times because of the different propagation velocities of the longitudinal and lateral waves. The
maximum hoop stresses of different natures act also in different sections of the lining structure. Therefore,
the determination of the location and magnitude of the total compressive and tensile stresses in the support
is possible using the graphic devices constructed by analytical expressions. Such graphic’s for maximum
hoop stresses in 0< & <z /4 sections of the support, being in the no slip contact condition, calculated for
two values of seismic waves propagation angles: « =0 and /4, are given in Figure 3.

a) b)
15
4 —1, geost. 20
“‘.- e, ——2, P-vawe 5 — 1, geostat.
0 \.. '.." ——3, Svawe / ——2, P-vawe
[T : N -
o
R ====15, geost+S 4 D44 S \ ——
s N/ 5 \\ -7 10 R N, W ETr5 geosts

s,

Ol
\Y
MmN

n
L RS

e

o

1

z 7
7N\ '

KX

maximum hoop stress (MPa)

Maximum hoop stress (MPa)
(%

’I 2 \

4
A

-10 -
0 0.5 1 15 2 25 3 3.5 100 0.5 1 1.5 2 25 3 35
Polar angle (radians) Polar angle (radians)

Fig. 3. Maximum hoop stresses, formed in the lining by: geostatic (1), P-wave (2) and S-wave (3) seismic forces
in the superposition of geostatic to the: P-wave (4), and S-wave (5) stresses, for the seismic waves propagation
angles: 0=0 , (a) and o= 7/ 4 (b).

The above-mentioned dependencies are valid also for free slip contact conditions and for other initial
data typical for practice.
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