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ABSTRACT. The dependence of the optical absorption coefficient vs photon energy near
fundamental absorption edge for InP, InAs and InP-InAs solid solutions was studied. The
experiments were performed at T=300K and T=80K before and after irradiation with high energy
electrons (50MeV). Before and after irradiation there has been revealed the exponential dependence
of the optical absorption coefficient vs photon energy with energy deficiency at all temperatures and
in all cases of irradiation. The mechanism of this phenomenon and the quantitative calculations,
which are in agreement with experimental data, were implemented. For the irradiated crystals
picture gets complicated. For crystals irradiated with high-energy electrons (50MeV), quantitative
analysis of the results is performed. It was shown that in irradiated crystals the exponential tails are
the result of the action of point defects. © 2018 Bull. Georg. Natl. Acad. Sci.
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Exponential optical absorption found at the fundamental edge is not something exclusive. It is a general
phenomenon clearly observed in many semiconductors. This phenomenon is very prominent in III-V
compounds. It was found in the irradiated materials as well. Nevertheless, identification of the mechanism
and development of general theory that would allow specific quantitative calculations turned out to be a
significant problem. This issue is of great importance for development of the new generation optoelectronic
devices. On the other hand, study of the irradiated materials is of importance for creation of the optical
structures and photocells that effectively operate in the space and at nuclear plants. This work is dedicated
to research of the mentioned issue on the example of InAs, InP compounds and InPAs; .« solid solutions.
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InP and InAs are important materials for use in optoelectronics, microelectronics and nanotechnologies
because of their high mobility of electrons and direct energy bands. On their basis, photocells with quantum
dots with a high conversion coefficient, as well as nanostructures, etc. are manufactured [1-3].

We have shown that InAs-InP solid solutions possess unique radiation properties, allowing discovery
of the phenomenon of mutual compensation of radiation donors and acceptors, and development of

materials that withstand very high fluencies of hard irradiation [4-12].

Experiments

Monocrystals of InAs, InP and practically all required compositions of InPyAs;.x solid solutions were
grown using the horizontal zone melting method. The obtained semiconductor materials are characterized
by a very high degree of homogeneity. The frequency dependences of the optical absorption coefficient
near the fundamental edge of these crystals have been measured before and after irradiation by electrons
with energies E=50MeV to fluencies of @=6-10'7el/cm? and fast neutrons with @=2-10'3n/cm?. The optical
measurements were carried out at room temperature and at T=80K using an infrared spectrometer and an

optical cryostat.

Results and Discussion

Optical absorption near the fundamental edge before irradiation. The frequency dependences (4v)
of the optical absorption coefficient (K) in the long-wave fundamental absorption region have been
measured in InAs, InP crystals and their InPxAs; solid solutions. The results before irradiation are shown

in Fig. 1. [InK=f(Av)]
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Fig. 1. The dependence of the optical absorption coefficient on the photon energy in InAs, InP

and InPxAsi-x solid solutions before irradiation.

It is shown that the presented dependence is described by an exponential law:

K=dge" /o, (1)

Where Ej is the parameter characterizing the material.

Absorption occurs at energies less than the forbidden band width. This phenomenon is anomalous also,
due to the fact that according to the classical theory of semiconductors the dependence K(%v) should be
expressed as an indicative function:

K~(hv-E,)", (2)

Where Eg is the width of the forbidden band.
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It is shown that the regularity of (1) is invariably observed at both high and low temperatures and is
preserved when the concentration of the impurity is varied over a wide range. This regularity was also
found in irradiated crystals.

The dependence (1) is called Urbach's law [13],

K=A, ehv/kOT’ 3)
where kj is the Boltzmann constant, 7' is the temperature.

This law was discovered by the author [13] in ionic crystals. However, in semiconductors the situation
is much more complicated. There Eo (see relation 1) is not equal to k¢T and, moreover, it depends on the
impurity concentration. Incidentally, it turned out that even in ionic crystals 7 differs from the true
temperature of the sample.

The exponential dependence (1) was also found in many other semiconductors, offering that the
observed phenomenon is not an exception, but rather a general law. It is believed that in ionic crystals,
Urbach's law is the result of the interaction of electrons with many phonons and that the process is realized
through excitons absorption. We have shown that excitons in semiconductors do not form the Urbach tails
of absorption. In general, very complex processes occur in semiconductors, which makes it difficult to
develop a general mechanism, moreover, in the works of a number of authors, inaccuracies and even
obvious errors have been revealed.

It was believed that the physically and mathematically well-grounded mechanism of this phenomenon
was developed by the well-known researchers Dixon and Ellis [14]. In [15] the theory and mechanism of
Dixon and Ellis were confirmed.

Authors [14] result is a consequence of the presence of a temperature smearing of the Fermi distribution.
It follows from the Dixon and Ellis theory that in heavily doped crystals, the £y value (1) depends on the
temperature, and does not depend on the impurity concentration, and in the weakly doped crystals, the
reverse picture takes place.

We have experimentally and theoretically proved that in reality, everything is reverse: in heavily doped
crystals, Ey does not depend on temperature while in weakly doped crystals it does.

Other theoretical models have been developed in [17, 18], which are too limited. N. Kekelidze and his
co-workers [19-21] developed mechanism of the phenomenon: in the general case, the observed
phenomenon is the result of superimposing of two processes of the phonon broadening of the edge and the
appearance of tails of the density of states in the forbidden band. Both these processes are described by
exponential frequency dependence.

At relatively high temperatures (including room temperature) in relatively pure crystals, this
phenomenon is determined by the interaction of carriers with longitudinal optical phonons and the slope of
the curves - (Ey) is proportional to the temperature.

As the temperature is lowered, the effect of phonon interaction with electrons sharply decreases and
below 77K ceases to play a noticeable role. Under these conditions, the phenomenon is mainly determined
by impurities, more precisely by the fluctuation of charged impurity concentrations and the influence of the
corresponding tailings of the density of states. The value of Ey is independent of temperature and is
proportional to the concentration of ionized impurities. In Intermediate cases, both processes are
important.

Based on the developed mechanism, it is possible to explain well all the available results, both ours and
of the other authors. We have also achieved a quantitative agreement between the theoretical calculations

and our experimental results. The phonon interaction with electrons processes were calculated using Dunn's
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theory [22]. For InAs, at T=300K, the experimental value E;~(8+10)-10°eV, which is in excellent
agreement with the theoretical value E,=10-10"¢V. At low temperatures, the experiment yields £y=1.5-10"
3eV, and on the basis of calculations E,=1.2-107¢V.

Well-coordinated data were also obtained for solid solutions. The experiment accurately captures the
growth of longitudinal optical phonons values in the transition from InAs to InP, which is caused by an
increase in the magnitude of the longitudinal optical phonon, which in turn is due to an increase in the
degree of ionicity in the chemical bond of the compound with an increase in the amount of phosphorus in
the alloy.

For InP at 300K, the experiment yields £y=16-10"¢V, and the theory Ey=14-107¢V.

Optical absorption near the threshold in irradiated crystals. A quantitative analysis of frequency
dependence of optical absorption coefficient K (hv) near the band-edge in InAs and InP crystals, irradiated
with 50MeV electrons has been carried out. Results are presented in Table.

Table. Quantitative analysis of frequency dependence of optical absorption coefficient K(/4v) neear
the band-edge in InAs and InP crystals, irradiated with 50MeV electrons
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1 | InAs | 2.0-10' | n | 8.0 9.0 | 10.0 27.0 {22.0| 17.0 | 8.0
2 | InAs | 3.0-10' | n | 8.3 162 [12.5
3 |InAs | 1.7107 | n | 8.4 13.5| 15.4 9.0
4| TAs | 2.0-10"7 | n | 10.0 | 6.4 23.0 | 14.0 14.2 10.5
5| P | 1.1-10% | n | 185 30.0 54.0 65.0 | 19.0

The table above provides measured values of the characteristic parameter Eo (without 10°eV) for InAs
and InP samples before and after irradiation of the crystals. Crystals were irradiated with 5S0MeV electrons
within the interval from 2-10'%¢/cm? to 6-10'7e/cm? Measurements were made at T=300K and T=80K
temperatures. The samples were also annealed at 200°C and 500°C temperatures. The table provides also
the carriers concentrations before irradiation. Interesting regularities were found.

For the weakly doped InAs, at room temperature, before crystal irradiation E¢=8, accurately reflects the
effect of longitudinal optical phonons. Weak irradiation with fluencies of ®=2-10'%¢/cm?> and
®=4.5-10"%¢/cm? causes radiation defects resulting in weak yet noticeable growth of Eo, from E¢=9 to
Eo=10. Irradiation of the samples with maximal fluence of ®=6-10"e/cm? resulted in drastic growth to
E¢=27.0 at the room temperature while at 80K value of Eq reduced slightly to E¢=22.0, caused by dramatic
reduction of the phonons’ action. Ey=22.0 value actually reflects the effect of radiation defects. Crystal
annealing at 200°C temperature reduces number of radiation defects as clearly seen from E¢ reduction to
17, while annealing at 500°C fully restores the crystal. The defects eliminate and Eo regains its original

value. In sample #2, where the concentration of the doping impurities was slightly higher than in crystal
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#1, approximately similar process takes place. In addition, even the mentioned slight change is reflected in
increase of Eo, to 8.3. In Sample #3, with growth of electrons’ (impurities’) concentration Eo increases to
8.4 while in the conditions of significant irradiation (®=1-10"7e/cm?) Eachieves 13.5.

Sample #4, with increased doping and hence concentration of electrons (n=2-10'7) E value increases to
10. Similar to the case of radiation defects, based on the E, values we can assess growth of impurities’
concentration. Irradiation with ®=1-10'"7e/cm? fluence increases number of defects and hence Ey values, to
reach 23 (T=300K) and 14 (T=80K) respectively. Thermal treatment (T=500°C) did not result in full
restoration of the defects, providing Eo=14.2.

As we can see from the table, results for InP samples are quite different. All values are increased
significantly. The crystal contains low concentration of impurities, as a result, value of the characteristic
parameter shows the effect of lattice vibration E¢=18.5, significantly higher, compared with InAs. This is
caused by increase of longitudinal optical phonon value. Irradiation with even minimal fluence of the
electrons (©=2:10'%/cm?) results in significant growth of Eq=30 while maximal fluence provides high
value of E¢=54.

All above is caused by the fact that phosphorus weight is two times lower than arsenic weight as a result
its lattice damage is much severer and hence contains much more radiation defects, compared with InAs.

Results of heat treatment of the irradiated crystal at T=200°C are very interesting, In InP E, value does
not fall, rather, it grows significantly to Ey=65. The cause is that irradiation with significant fluencies create
large defects in InP though they are not optically and electrically active. We regard that the studied
fundamental absorption long-wave exponential tails result from the point radiation defects rather than from
their large associations. In the conditions of thermal treatment these associations split to produce active
point defects, causing growth of Eo. Thermal treatment at 500°C restores the crystal lattice as evidenced
from the value Eo=19.

Based on the performed studies we can conclude that Eo, the parameter characterizing fundamental
optical absorption exponential tails is particularly sensitive to radiation defects, similar to the impurities.
And this provides significance information about radiation defects and impurities, clarify the mechanisms

of defects emergence through analysis of the Ey values.

Conclusion

In InAs, InP crystals and their InP-InAs solid solutions, the exponential frequency dependences of the
optical absorption coefficient near the fundamental edge were studied at room and low temperatures, before
and after irradiation with electrons. The mechanisms of this anomalous phenomenon were developed. The
quantitative analysis of the results has been performed. It was shown, that in irradiated crystals the

exponential tails are results of point defect action.

This work was supported by Shota Rustaveli National Science Foundation (SRNSF) [Grant #YS-2016-
74, Project Title: Application of Arsenic of Georgian Ores for Producing Crystals of I1I-V Semiconductor
Compounds].
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