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ABSTRACT. The aim of this work consists in introduction of a new concept of canonically
conjugate fuzzy subset containing a new information on an informational unit. It is known that an
informational unit is a four (quadrupole - object, sing, value, verity). It is necessary to distinguish
between the notions of inaccuracy and uncertainty. Inaccuracy is related with the “value” content of
the four, whereas the uncertainty is related with the plausibility in the sense of its correspondence to
reality (the component “verity”). It is known that there is a contradiction between the increase of the
content of statement and its uncertainty saying that the increase of the expression’s accuracy
increases its uncertainty, and vise versa, an uncertain character of information leads to some
inaccuracy of the final conclusion received from the information in question. We see that on the one
hand the notions are in a certain contradiction, and on another hand they complete each other. We
have solved out the arising situation by use of a new concept of an optimal pair of canonically
conjugate fuzzy subsets. Usually fuzzy subsets are being constructed based on an expert estimation
of one of the concurrent components. A new approach to the representation of subjective and
objective information based on the theory of fuzzy subsets is proposed. In order to consider
collectively canonically conjugate attributes (inaccuracy and uncertainty), a probabilistic model of
canonically conjugate subsets is constructed that essentially uses the theory of representations of
functions of non-commutating variables. Within the framework of this model operator’s properties
corresponding to the canonically conjugate attributes are established. © 2018 Bull. Georg. Natl. Acad.
Sci.
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One of the central concepts of our work is the concept of colour, attribute, each element of the universal
set Q. Each element €€ corresponds to a certain range of colour values (similar to the case in the case
of real colour, for example, a certain frequency interval corresponds to the blue colour on the frequency
scale).

The idea of introducing a new concept of colour as well as the most important concept of canonically
conjugate fuzzy subsets belongs to T. Gachechiladze [1].

Here we use the well-known scheme for representing fuzzy subsets [2]. Let the set £ (universal set)
and the property P (attribute, colour) defined in it be given. We denote by A (Q) and P, (Q) the subsets
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Q formed by the elements @e) for which the sentence 73[0)]—(0 has the colour P - true, or false.
Further let By < P, . We can consider the colour —P defined in Q:

— Plo] < (@ePy(Q)

If P denotes a colour complementary to R, then Q has the relation:
— Plo]=Plo].
The inverse implication is valid only on the set 4(Q) =R (Q)U 7P, (Q). With the help of 7, it is
possible to define various —P , such that if —P[w] is true, then P[w]is false on Q, but the reverse
implication takes place on 4(Q)< Q. Let's see how it is possible to construct the set 7 (o) =P, (Q).

To this end, we assume that each element of Q can have a different colour P in different degrees. Further,
suppose that we are able to assign to each @€ a measure of its compatibility with the colour P . We
formally define the mapping:

pp :Q—>[0,1], R (o),
what

Plo] e (up (0)=1).

For each oeQ up ((D) is called the value of the compatibility function @ with P . If up (03) =1, we

will say that ® has the colour P . If pup (a)) =0, then ® does not have the colour P . In what follows,
R ((D) is identified with a subset of elements 7, (Q) that do not possess the colour P . We call the

colour P in Q satisfying the conditions considered above "measurable in € ". If we assume in addition
that R (Q) is not empty, then P will be called "completely measurable in Q"

Assumption 1 (basic). The numerical characteristic of colour fp is a random variable. In the reference

system of the universal set €2 this is a latent parameter.
Let the probability distribution of the values &p (x) € R be characterized by the density pp (xw ) ,

jpp (x(o)dx(o =1.
R

Quantity
x;EM§p=jpp(xw)dxw=l, (D
R

mathematical expectation, we call the calculated value of the colour P at the point @ of the universal set
Q.

Note that formula (1) establishes the relation between the set of computable values and the universal set
Q.

Therefore the meaning of the notations is clear:

(the set x,, € R and o € P(Q) < P(R)),

(the set x, € R and 0 € (Q) < B (Q)),
(theset x,, € R and 0 € (Q) = R (Q)),
(the set x,, € R and 0 €, (Q) < P, (Q)).

We transferred the structure of the uncertainty from Q to R .
If the set 73 (Q) is not empty, then there exist @ such that

J Pp (xw)dxw <1
P(R)
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The presence of colour for @ € Q, in addition to the quantity M &, is characterized by the variance
2 .
3 (0):

o} (0)=D (&) = [ (ry =500 P () ¥, @)
R

In the new model, we attribute o (@) to the uncertainty of the colour value P of ®. If o (0)—>0
then we say that P in ® has a well-defined value. The larger 672; (a)) , the more uncertain P isin ® . If

o (@) > o, then ® does not have the colour P .

We denote the compatibility function (accessory) of a fuzzy subset by up (@) . Thus, if up (@)=1,

then we say that x:o definitely has the colour P , and if p, (a)) =0, we say that x::) does not have the
colour P .

R is matched with the set of "unpainted"” in colour P elements x:) € R . Elements of R that do not
belong to 7 (R)U R (R) have a colour P to some extent characterized by the number 11, (@) €(0,1).
Otherwise, the colour model can be applied in R . Below we will assume that the universal set  is a

numerical set R : pp (@)= pup (x:)) . The notion of measurability in £ corresponds to the notion of

computability in R , the notion of "complete measurability” in € - "complete computability" in R .

Below we will assume that the universal set is a numerical set R :

pp (@)= pp (x:)) :

Assumption 2. In R we define only P and —P , that is, along with R (R) there is a unique 7 (R)
and the elements of R not belonging to these two subsets have an "intermediate" colour. This circumstance
is expressed by means of the relation:

#ﬁp(x:))=1—#7> (x:)) .
Definition 1. For Vo € Q we introduce a certain interval of values P(R) I, (@) < R with the help

of the relation:
pp ()= wz (x;): J p(x,)dx, :JIP (@) pp(x,)dx, > 3)
Ip(w) R
where 1 (a)) is determined by the expert in such a way that 5 (co) is a function of compatibility @ with
colour P .
We call the interval defined by (3) the characteristic colour interval of P . We denote by P the fuzzy
subset corresponding to the colour P .

If pg (a)) is considered as the splitting function of the set (the interval U 71, ( x, ) = Supp P ), then for

weR
Vo € Q we can write
Ity (30) = 45 (9) o (30 #1150 i 35 @
The first term 115 (a))lp(w) (x:)) = 75(60) is the value of the compatibility function of the fuzzy subset

Q, and the second term corresponds to the dual one:

* D
Definition 2. The split set defined by the basic assumption 1, relations (1), (2) and (3) , that is
Q, ={6)E(co, up(w)) oe Q}
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will be called the probabilistic model of a fuzzy subset of the universal set €2.

Similarly, a subset
Q;,c ={(I)c z(coc, Hope (a)c): o, € Q}
will be called the probabilistic model of the fuzzy subset of the universal set Q° that is canonically
conjugate with respect to (4).
Both subsets f27) and flpc contain information about the state O, which is complementary to each

fuzzy subset Q, and flpc .

Consider the operators
M(a)zeiap , ]\;[c (ﬂ)zeiﬂpc .
Scalar products
(a)M = ((xw;P I,M(a) Ix,; 73)),
M (B)=(¢x,:P LM (B)lx,; P°)
will be called the characteristic functions of the canonically conjugate colours P and P°, respectively
(Here we use the bracket notation Dirac [3]).
The following relations hold
(x,; 73|75|xw; P) =(x,,;P* |75|xcw;7)c>, )
(X5 PIPe Ix.,; P =(x,; PIPe Ix,; P).

Theorem 1. The operators of canonically conjugate colours 7 and P¢ are connected by the following

commutation relation
PP PP =ick, (6)
where E is the operator of the identity transformation.

Proof. Let 75f(x) = xf(x) , f(x) and f'(x) el’ (R) . Then
(PP¢ —P”P)f(x) =P (P° f(x)—P” (Pf(x)) =icE(x)f(x).

Here we used the well-known formulas valid for Hermitian operators.

Comment. The relation (6) determines the quantitative relationship between canonically conjugate
colours. This ratio limits the simultaneous "measurability” of canonically conjugate colours and allows us
to study the uncertainty principle for "estimates" 7 and P° simultaneously [4], analogous to the
Heisenberg uncertainty principle.

It is obvious that the relations (5) can be generalized:

(<xw; ,Pl’ﬁn |xw; P>)=(<xcm; ch |’75n |xc(o; PC))
(<xw; PLP Ix,; 7’>)=(<xm; PP Ix,; Pc))’

Since

eioﬂ3 _ i (ai)k 751( and eiﬂﬁ(‘ _ i (ai)k 75ck
- k! i

Therefore we have
() ( Xy P LM () wa;P)) :((xw;P" LM (a) wa;P"))

=«
- . (7
“(B)=(x0: PLMBIxys P)=((x0s P LM (B) lxs P))-

M
M
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In view of the fact that

PlXons P =X X Py P a0 PO = x0 1,0 P, ®)
and for the operators P and ¢ fair the relations
. d d
Plx.,; P)=ic—Ix,;P°), Pe lx,; Py=—ic—Ix,; P). 9)
dxca) dx&)

According to (8), (9), we can write:

M(a)lx,. P)-ew‘x"’ Ix,; P).
M ()l x5 PO) =l x,, —ac; PC). (10)
M(ﬂ)lxm,P>—|x +ﬂc73)

(ﬂ)lxm, y=eP%o | x, PO,

The first and last equalities in (10) are directly expressed from (8), as regards the second and third

equalities, then, according to (9), we have:

© \k . o [ k k
Z(m) Pklxw;P)zz( ac) d [ X,0: Py =l x.p —axc; PY >

© \k © ; K
z(ﬂl) 750'-'|xw;73>:z:(lﬂ) (—zc) p wa,P)_Ix + pe;P).

k=0 * k=0 : xw

Theorem 2. If M (a) and M ( [5’) are defined by formulas (10),
X5 P>6L2( ) and |xcw,730>=13|xw;7?>,
that
I((x P () lx,; P Y)e (11)
Ppe (¥eo) =5j(<xw,;7>°' LM (B) %3P Ve o d . (12)
R

Proof. We now prove (11). Formula (12) is proved similarly. We have:

1 i . . ' '
Zj.dae o Rj<xw; Ple*e |x,; Pydx, =

S {% ldaez’xw—x@q i
R

In conclusion, we note that, by virtue of (7), the probability density of the canonically conjugate colours
P and P° admits the following representation'
j(< X0t P UM () 13,0 P e ™ dar,

Ppe (%) :EJ‘((%; P LM(ﬁ) lx,; P))e Podp.
R
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