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We present several generalizations of our recent results on the electrostatic interpretation of points 
in the plane with respect to a given non-degenerate triangle T. First, we extend the definition of the 
so-called stationary charges in such a way that their existence and uniqueness hold for all points in 
the complement of three straight lines defined by the sides of T. Next, we show that, for any point P 
outside of T, stationary charges cannot have the same sign, and describe possible combinations of 
signs. For a regular triangle T and point P outside of T, it is also shown that the stationary charges of 
P have exactly two saddle-points and this defines a differentiable involution in the complement of T. 
The main results are complemented by a few typical examples and several related conjectures.  
© 2021 Bull. Georg. Natl. Acad. Sci. 
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We present new applications of an approach to Maxwell's conjecture on equilibria of point charges (see, 
e.g., [1-3]) developed in [4, 5]. Recall that Maxwell's conjecture on the number of equilibrium points of 
several point charges remains unproven even in the case of three charges. A novel approach to this 
conjecture in the case of three charges has been developed in [5] following some ideas of [4]. In this paper, 
we use the same approach and generalize some results of [5] and [6]. The main ingredient of our approach 
is a representation of given point as an equilibrium point of certain point charges with Coulomb interaction 
placed at the vertices of a given triangle.  

As was proven in [4], for a generic configuration of points in Euclidean plane, there exist values and 
positions of point charges such that the given points are stationary points of this system of point charges. 
Results of such type are often referred to as the electrostatic interpretation of configurations of points [7]. 
In the case of logarithmic potential, the latter topic is closely related to the theory of orthogonal polynomials 
and has important applications in mathematical physics (see, e.g., [7]). It should be noted that the 
logarithmic potential is not relevant to the problems concerned with the mathematical models of so-called 
electromagnetic ion traps constructed by W. Paul [8] which play important role in several topics of modern 
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physics. The approach suggested in [4] and further developed in [5] was motivated by those physical 
problems and enabled us to construct a model of triangular electrostatic ion trap [5] similar to the quadruple 
ion trap of W.Paul [8].  

In this paper, we apply the same approach to certain aspects of Maxwell's conjecture for three point 
charges. In particular, we extend the main construction of so-called stationary charges of point with respect 
to a given triangle in such a way that it includes charges of different signs. Special attention is given to the 
cases of regular triangle studied in [2] and three point charges with equal magnitudes considered in [3]. 
Some of the computations used in this paper were performed using Maple. It should be noted that all 
computations assisted by computer involved only symbolic and exact integer computations. Therefore, all 
the results in the sequel are in fact rigorously proven. 

In the sequel we are concerned with the case of three point charges. To make the exposition self-
contained we begin with presenting the relevant concepts in this case. Let T be a non-degenerate triangle 
equal to the convex hull of a triple of points  1 2 3, ,A A A A  in Euclidean plane. As usual non-degenerate 
means that the given three points do not belong to the same straight line. Then they define three lines li  
passing through points , ,j kA A  where ( , , )i j k  is a cyclic permutation of (1, 2, 3). The union of these lines 

is denoted by L. We also denote by CA  the complement to three points 1 2 3, ,A A A  in the plane and by CL  the 

complement to L. 
Using an isometry of the plane, without loss of generality we may assume that 

 1 ,0 ,A a    2 ,0 ,A a   3 ,A z w  

with positive real numbers a and w. For a non-trivial (non-zero) triple of real numbers  1 2 3, ,Q q q q , we 

introduce a function E of the point  ,P x y  in CA  given by 

       
31 2

2 2 2 22 2
( ) .

qq qE P
x a y x a y x z y w

  
      

                           (1) 

As is well known, this function is equal to the electrostatic potential of point charges iq  placed at 
vertices iA  of T [1]. Following [5], function (1) will be denoted by  @ .E Q A  Clearly, this function is 

infinitely differentiable in CA . So we can speak of its gradient gradV E , hessian determinant Eh h  and 

stationary (critical) points in CA . As usual the stationary points of E are called equilibrium points of system 
of point charges @ .Q A   

Following [5], given a point  ,P x y in CA  let us search for a non-trivial triple of real numbers 

 1 2 3, ,Q q q q  such that P is a stationary point of the function  @ .E Q A  Computing the gradient of

 @E Q A  and setting it equal to zero we get a system of two linear equations for unknowns 1 2 3, ,q q q  : 

   2 31
2 2 3/ 2 2 2 3/2 2 2 3/ 2

31 2
2 2 3/2 2 2 3/ 2 2 2 3/2

( ) 0,
(( ) ) (( ) ) (( ) ( ) )

( )
0.

(( ) ) (( ) ) (( ) ( ) )

q x a q x zq x a
x a y x a y x z y w

q y wq y q y
x a y x a y x z y w

  
  

      


          

                        (2) 

For a given point  , ,CP x y A  real numbers 1 2 3, ,q q q  are called the normalized stationary charges of 

P with respect to T if they satisfy the above two linear equations and the normalizing condition 
1 2 3 1.q q q     
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This is an extension of definition used in [5], where the stationary charges were only introduced for 
points inside T. By Theorem 1 in [5], for each point P inside T, there exists a uniquely defined triple of 
positive normalized stationary charges. Explicit formulas for these charges are also given in [5].  

In this paper, we use another form of normalizing condition. Namely, we assume that the charge 3q is 

always equal to one. Then a slight modification of the proof given in [5] yields that any point P in CA  has 
a uniquely defined system of stationary charges with the above normalizing condition. This system of 
charges will be denoted  ; .Q P T  An important difference is that now the stationary charges may have 

different signs. The possible combinations of signs will be described in the sequel. 
 
Solving the system (2) with 3 1q   we get that the stationary charges are equal to 

   
 

3/ 22 2 2

3/22 2 2 2

2
,

2 2 2

a ax x y aw ay wx yz
r

ay w wy x xz y z

     


    
                               (3) 

   
 

3/22 2 2

3/22 2 2 2

2
.

2 2 2

a ax x y aw ay wx yz
s

ay w wy x xz y z

     


    
                               (4) 

The following theorem generalizes some results of [5] and [6].  
 

Theorem 1. Any point P  in CA  has a uniquely defined system of normalized stationary charges  ; .Q P T  

All stationary charges are positive if and only if the point P lies inside T. One of the stationary charges 
vanishes if and only if point P belongs to \ .L A  The combination of signs of stationary charges remains the 
same for each connected component of the complement .CL  

The proof relies on interpretation of factors in formulas (3), (4) as powers of distances and oriented 
areas of arising triangles .i jPA A  It is then easy to see that the sign of second factor in the numerators of 

(3), (4) remains the same for each component jU  of the complement .CL  Obviously, one of those oriented 

areas vanishes if and only if point P lies in L. In the latter case the situation fits a model of linear electrostatic 
ion trap considered in [6] and the above formulas for stationary charges coincide with the formulas given 
in [6].  

By Theorem 1, to determine the combinations of signs of stationary charges it is sufficient to compute 
it for just one point in each of the seven connected components of .CL  Let us illustrate this situation by an 
example which will also be used in further considerations. 

 
Example 1. Let us consider a triple of points       1,0 , 1,0 , 0,1  forming an isosceles right triangle T. Its 

sides lie on the lines  

 1 0 ,l y    2 1 0 ,l x y      3 1 0 .l y x     

Let us numerate the six unbounded components jU  of CL counterclockwise starting with the first 
quadrant. Thus 1U  is defined by inequalities  

 0, 1 0, 1 0 ,y x y x y        
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and other components are defined by similar linear inequalities. For , 1,...,6,i j   domains iU  and jU   

are called conjugate (with respect to T) if | | 3.i j   For example,  4 0, 1 0U y y x      is  
conjugate to 1.U  The interior of T is denoted by 7U  and we already know from [5] that the  
stationary charges are all positive in 7 .U  Let us take points  1,1P   and  2, 1/ 2P     lying in 

conjugate domains 1U  and 4U  respectively. From formulas (3, 4) we get    ; 5 5 / 2,1/ 2,1Q P T    and 

   ; 7 5 / 50,37 37 / 250,1 .Q R T    So we see that the combinations of signs of stationary charges 

coincide for 1U  and 4U . Analogously, it is easy to verify that the combinations of signs of stationary 
charges coincide in pairs  2 5,U U  and  3 6, ,U U  i.e. in each pair of conjugate components of CL . 

 
Remark 1. Clearly, similar notations and definitions are applicable for any non-degenerate triangle. It can 
be proven that the mentioned coincidence of combinations of signs in pairs of conjugate components of CL  
holds for any non-degenerate triangle T but we do not discuss the general result for the reason of space.  

In line with approach of [5] it is now natural to wonder which types of equilibrium points of stationary 
charges arise in the connected components of CL . This issue was discussed in [5] for the interior domain 

7U  of an isosceles triangle T. We complement the discussion in [5] by solving the problem for all points 

outside a regular triangle T.  
To this end, we use the hessian Ph  of stationary charges introduced in [5]. According to [5] a non-

degenerate stationary point P is a non-degenerate minimum point of its stationary charges  ;Q P T  if and 

only if   0.Ph P   If   0,Ph P   point P is a non-degenerate saddle point of its stationary charges of Morse 

index one. Recall that according to [5] there exists a convex domain  S T  inside a regular triangle T such 

that, for any point P in  S T , one has   0Ph P   and so the point P is a minimum point of its stationary 

charges. This result was used in [5] to suggest a scenario of Coulomb control in  S T  analogous to the 

scenarios discussed in [9]. The following result shows that the situation is essentially different for points 
outside T. 
 
Theorem 2. For any point P outside a regular triangle T, stationary charges of P with respect to T have 
exactly two equilibrium points which are non-degenerate saddle points: the point P itself and a certain point 

*P . The point *P , called the T-conjugate of P, lies in the conjugate component of the component of CL  
containing point P.  

 
The proof uses Theorem 1 and some results of [2]. As was shown in [2], for any values iq  of vertex 

charges with 1 2 3 0q q q  , there exist only two stationary points of the corresponding Coulomb potential (1). 

By Morse equality both such stationary points are saddle points. Let us denote by D the mapping defined 
on CL , which sends each point P to its T -conjugate *P . Consider the image  jD U , where jU  is the 

component of CL  containing point P. By implicit differentiation of relations (3), (4) it is easy to verify that 
mapping D is differentiable and locally one-to-one. Hence the set  jD U  is connected as the continuous 

image of connected component jU . From Theorem 1 follows that  jD U  should lie either in jU  itself or 
in its conjugate component jU . To find out which of these two possibilities is realized it is sufficient to 
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compute the conjugate of just one point jP  in jU . Direct computation shows that  jD P  lies in the 
conjugate component of jU , which completes the proof.  

 
Remark 2. From the local invertibility of D follows that D is a diffeomorphism between a component jU  
and its conjugate component jU . Moreover, from the definition of D follows that the composition D D  

is equal to the identity mapping of CL . Thus we have constructed a natural differentiable involution acting 
in the set CL . An interesting problem is to investigate its behavior near the boundaries of components jU . 

It is easy to show that boundary points, i.e. the points lying in \L A , are degenerate stationary points of their 
stationary charges with respect to T. So the behavior of D near such points should exhibit some kind of 
bifurcation and it is interesting to describe its topological type and normal form. As a first step one could 
investigate the behavior of D near each vertex .iA  Computations show that the boundaries of two conjugate 

domains are mapped to each other in one-to-one manner and the situation has certain similarity with the 
boundary behavior of conformal mappings although it can be shown that D is not conformal. 

 
To illustrate Theorem 2 by we present some computations for a concrete regular triangle.  

 
Example 2. Let T be a regular triangle with vertices      1,0 , 1,0 , 0, 3  and let  0,2P   be a point in 

component 2U  of CL . Stationary charges  ;Q P T  in this case are  5 5 / 4, 5 5 / 4,1 .   From the fact 

that there exist only two stationary points of  ;Q P T , and the symmetry with respect to Oy -axis follows 

that the T -conjugate  D P  also lies on Oy -axis. Hence it is sufficient to find the ordinate y of *P  which, 

as can be easily seen should be a root of an algebraic equation:  

   432 21 4 3 0.y y y                                                         (5) 

Using Sturm's algorithm it is easy to verify that this equation has only two real roots. Solving it we get 
that the values of roots: 2 (exact) and 0.1414  (approximate). So the second stationary point is 

 * 0, 0.1414 .P    Computing the values of hessian Ph  at these stationary points we get   1/ 5,Ph P    

 * 2587328 / 7226562.Ph P    So both stationary points are non-degenerate saddles as was expected. 

Performing the same computations for point  0,4P   we get  

   ; 51 17 / 216, 51 17 / 216,1Q P T    ,  * 0, 0.3375 .P    

Thus we see that as the ordinate of point P grows the ordinate of point *P decreases. In fact, this behavior 
of conjugate point on Oy -axis can be rigorously proven. The same type of behavior is observed on other 

lines passing through vertices of triangle T, which can be used for investigating the boundary behavior of 
mapping D near the vertices of T. 
 
Remark 3. Using the same arguments as above one can obtain an analog of Theorem 2 in the case of an 
isosceles right triangle studied in [2]. 

 
We notice that in the above examples the stationary charges of different signs have only two stationary 

points which are non-degenerate saddles. So it is natural to wonder if three charges of different signs always 
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have only two equilibrium points. This question seems to remain unanswered in the literature and we were 
unable to solve this problem in general. However it can be answered positively in some special cases one 
of which is given below. 

 
Theorem 3. Three point charges of equal magnitudes with different signs at vertices of any non-degenerate 
triangle have always two equilibrium points which are non-degenerate saddles.  

Since by [3] the number of equilibrium points of non-equal charges in this case is two, this can be 
proven using the same reasoning as in the proof of Theorem 2. This result gives some evidence to conjecture 
that three point charges of different signs always have only two equilibrium points, which would prove an 
important special case of Maxwells' conjecture for three point charges. 

მათემატიკა 

სამი წერტილოვანი მუხტის წონასწორობის  
წერტილების შესახებ 

გ. გიორგაძე* და გ. ხიმშიაშვილი** 

*საქართველოს ტექნიკური უნივერსიტეტი, კიბერნეტიკის ინსტიტუტი, თბილისი, საქართველო 
**ილიას სახელმწიფო უნივერსიტეტი, ფუნდამენტური და ინტერდისციპლინარული მათემატიკური 
კვლევების ინსტიტუტი, თბილისი, საქართველო 

(წარმოდგენილია აკადემიის წევრის რ. გამყრელიძის მიერ) 

სტატიაში განხილულია ავტორების ბოლოდროინდელი შედეგების განზოგადება მოცემული 
გადაუგვარებელი T სამკუთხედის მიმართ სიბრტყეზე წერტილების კონფიგურაციის ელექ- 
ტროსტატიკური ინტერპრეტაციის შესახებ. განზოგადებულია ე. წ. სტაციონარული მუხტის  
ცნება იმგვარად, რომ მისი არსებობა და ერთადერთობა გამომდინარეობს ყველა წერტი- 
ლისთვის სამკუთხედის გვერდებისგან შედგენილი წრფეების დამატებიდან. ამის შემდეგ  
ნაჩვენებია, რომ T-ს ყოველი P გარე წერტილისათვის სტაციონარულ მუხტებს არ შეიძლება  
ჰქონდეთ ერთნაირი ნიშანი. აღწერილია მათი შესაძლო კომბინაციები. ტოლგვერდა T სამ- 
კუთხედისათვის და მის გარეთ აღებული P წერტილისათვის ნაჩვენებია, რომ სტაციონა- 
რული მუხტები უნაგირის ტიპის წერტილებია, რომელთა რაოდენობაა 2. წერტილთა ეს  
წყვილები განსაზღვრავენ T-ს დამატებაზე დიფერენცირებად ინვოლუციას. ძირითად შედე- 
გებთან ერთად მოყვანილია რამდენიმე ტიპური მაგალითი და ამ შედეგებიდან გამომდინარე  
ჰიპოთეზები. 
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