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We present several generalizations of our recent results on the electrostatic interpretation of points
in the plane with respect to a given non-degenerate triangle 7. First, we extend the definition of the
so-called stationary charges in such a way that their existence and uniqueness hold for all points in
the complement of three straight lines defined by the sides of 7. Next, we show that, for any point P
outside of 7, stationary charges cannot have the same sign, and describe possible combinations of
signs. For a regular triangle T and point P outside of 7, it is also shown that the stationary charges of
P have exactly two saddle-points and this defines a differentiable involution in the complement of 7.

The main results are complemented by a few typical examples and several related conjectures.
© 2021 Bull. Georg. Natl. Acad. Sci.
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We present new applications of an approach to Maxwell's conjecture on equilibria of point charges (see,
e.g., [1-3]) developed in [4, 5]. Recall that Maxwell's conjecture on the number of equilibrium points of
several point charges remains unproven even in the case of three charges. A novel approach to this
conjecture in the case of three charges has been developed in [5] following some ideas of [4]. In this paper,
we use the same approach and generalize some results of [5] and [6]. The main ingredient of our approach
is a representation of given point as an equilibrium point of certain point charges with Coulomb interaction
placed at the vertices of a given triangle.

As was proven in [4], for a generic configuration of points in Euclidean plane, there exist values and
positions of point charges such that the given points are stationary points of this system of point charges.
Results of such type are often referred to as the electrostatic interpretation of configurations of points [7].
In the case of logarithmic potential, the latter topic is closely related to the theory of orthogonal polynomials
and has important applications in mathematical physics (see, e.g., [7]). It should be noted that the
logarithmic potential is not relevant to the problems concerned with the mathematical models of so-called

electromagnetic ion traps constructed by W. Paul [8] which play important role in several topics of modern
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8 Grigori Giorgadze and Giorgi Khimshiashvili

physics. The approach suggested in [4] and further developed in [5] was motivated by those physical
problems and enabled us to construct a model of triangular electrostatic ion trap [5] similar to the quadruple
ion trap of W.Paul [8].

In this paper, we apply the same approach to certain aspects of Maxwell's conjecture for three point
charges. In particular, we extend the main construction of so-called stationary charges of point with respect
to a given triangle in such a way that it includes charges of different signs. Special attention is given to the
cases of regular triangle studied in [2] and three point charges with equal magnitudes considered in [3].
Some of the computations used in this paper were performed using Maple. It should be noted that all
computations assisted by computer involved only symbolic and exact integer computations. Therefore, all
the results in the sequel are in fact rigorously proven.

In the sequel we are concerned with the case of three point charges. To make the exposition self-
contained we begin with presenting the relevant concepts in this case. Let 7 be a non-degenerate triangle
equal to the convex hull of a triple of points 4 = (A1 ,4,, Az) in Euclidean plane. As usual non-degenerate
means that the given three points do not belong to the same straight line. Then they define three lines /;
passing through points 4, 4., where (i, j,k) is a cyclic permutation of (1, 2, 3). The union of these lines

is denoted by L. We also denote by 4° the complement to three points 4,, 4,, 4, in the plane and by L° the

complement to L.

Using an isometry of the plane, without loss of generality we may assume that
4= (—a,O), 4, = (a,O), 4= (z,w)

with positive real numbers a and w. For a non-trivial (non-zero) triple of real numbers Q = (q1 2q5>q5 ) , We

introduce a function £ of the point P(x, y) in A° given by

EP)=——e 4 . (1)

2 5 2 5 2 2

Jx+a) +37 Jx=a) +2 Jx-z) +(r-w)
As is well known, this function is equal to the electrostatic potential of point charges g, placed at
vertices 4, of T [1]. Following [5], function (1) will be denoted by E (Q@ A). Clearly, this function is
infinitely differentiable in 4. So we can speak of its gradient V' = gradE , hessian determinant 4 = 4, and

stationary (critical) points in 4 . As usual the stationary points of £ are called equilibrium points of system
of point charges O @ A.

Following [5], given a point P(x, y)in A let us search for a non-trivial triple of real numbers
0= (ql,qz,%) such that P is a stationary point of the function £ (Q@ A). Computing the gradient of

E (Q@ A) and setting it equal to zero we get a system of two linear equations for unknowns ¢,,q,,q; :

ara) elre) o albon)
((x+a)2 +y2)3/2 ((x—a)2 +y2)3/2 ((x—z)2 +(y_w)2)3/2 > o
Lid 1Y q;,(y—w)

+ + =
(x+a)’ +y")"  (x=a) +py)"7 (x=2)" +(y-w)')"
For a given point P (x, y) € A°, real numbers 4,-4,.4, are called the normalized stationary charges of

P with respect to T if they satisfy the above two linear equations and the normalizing condition
q,+q,+q,=1.
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This is an extension of definition used in [5], where the stationary charges were only introduced for
points inside 7. By Theorem 1 in [5], for each point P inside 7, there exists a uniquely defined triple of
positive normalized stationary charges. Explicit formulas for these charges are also given in [5].

In this paper, we use another form of normalizing condition. Namely, we assume that the charge g, is
always equal to one. Then a slight modification of the proof given in [5] yields that any point Pin 4 has
a uniquely defined system of stationary charges with the above normalizing condition. This system of
charges will be denoted Q(P;T ) An important difference is that now the stationary charges may have

different signs. The possible combinations of signs will be described in the sequel.

Solving the system (2) with g, =1 we get that the stationary charges are equal to

(a2 +2ax+x" +y° )3/2 (aw—ay—wx+yz)
"= 2 2 2 2 32 ’ (3)
2ay(w —2wy+x" =2xz4+y +z )

(612—2ax+xz+y2)3/2 (aw—ay+wx—yz)
5= 2 2 2 2 32 ’ (4)
2ay(w —2wy+x" =2xz+y +z )

The following theorem generalizes some results of [S] and [6].

Theorem 1. Any point P in A has a uniquely defined system of normalized stationary charges Q(P;T )

All stationary charges are positive if and only if the point P lies inside T. One of the stationary charges
vanishes if and only if point P belongs to L \ 4. The combination of signs of stationary charges remains the
same for each connected component of the complement L°.

The proof relies on interpretation of factors in formulas (3), (4) as powers of distances and oriented
areas of arising triangles APA, 4;. It is then easy to see that the sign of second factor in the numerators of

(3), (4) remains the same for each component U ; of the complement L°. Obviously, one of those oriented

areas vanishes if and only if point P lies in L. In the latter case the situation fits a model of linear electrostatic
ion trap considered in [6] and the above formulas for stationary charges coincide with the formulas given
in [6].

By Theorem 1, to determine the combinations of signs of stationary charges it is sufficient to compute
it for just one point in each of the seven connected components of L. Let us illustrate this situation by an

example which will also be used in further considerations.

Example 1. Let us consider a triple of points {(—l, 0),(1,0),(0,1)} forming an isosceles right triangle 7. Its

sides lie on the lines
h={r=0}, b ={r+y-1=0}, L={y-x-1=0}.

Let us numerate the six unbounded components U; of L° counterclockwise starting with the first

quadrant. Thus U, is defined by inequalities

{y>0,x+y—1>0,x—y+1>0},
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and other components are defined by similar linear inequalities. For 7,/ =1,...,6, domains U, and U,
are called conjugate (with respect to 7) if |i—j|=3. For example, U, ={y<0,y—x—1<0} is
conjugate to U,. The interior of T is denoted by U, and we already know from [5] that the
stationary charges are all positive in U,. Let us take points P=(1,1) and P=(—2,—1/ 2) lying in
conjugate domains U, and U, respectively. From formulas (3, 4) we get Q(P;T) = (—Sx/g 12,1/ 2,1) and

Q(R;T) :(—7\/5 / 50,37@ / 250,1). So we see that the combinations of signs of stationary charges
coincide for U, and U,. Analogously, it is easy to verify that the combinations of signs of stationary

charges coincide in pairs (UZ,US) and (U3,U6 ), i.e. in each pair of conjugate components of L.

Remark 1. Clearly, similar notations and definitions are applicable for any non-degenerate triangle. It can
be proven that the mentioned coincidence of combinations of signs in pairs of conjugate components of L°
holds for any non-degenerate triangle 7 but we do not discuss the general result for the reason of space.

In line with approach of [5] it is now natural to wonder which types of equilibrium points of stationary

charges arise in the connected components of L. This issue was discussed in [5] for the interior domain
U, of an isosceles triangle 7. We complement the discussion in [5] by solving the problem for all points

outside a regular triangle 7.
To this end, we use the hessian %, of stationary charges introduced in [5]. According to [5] a non-

degenerate stationary point P is a non-degenerate minimum point of its stationary charges Q(P; T ) ifand
onlyif 4, (P) >0.If A, (P) <0, point P is a non-degenerate saddle point of its stationary charges of Morse
index one. Recall that according to [5] there exists a convex domain S (T) inside a regular triangle 7 such
that, for any point P in S (T) one has /, (P) >0 and so the point P is a minimum point of its stationary
charges. This result was used in [5] to suggest a scenario of Coulomb control in S (T) analogous to the

scenarios discussed in [9]. The following result shows that the situation is essentially different for points
outside 7.

Theorem 2. For any point P outside a regular triangle 7, stationary charges of P with respect to 7 have
exactly two equilibrium points which are non-degenerate saddle points: the point P itself and a certain point
P". The point P", called the T-conjugate of P, lies in the conjugate component of the component of L°

containing point P.

The proof uses Theorem 1 and some results of [2]. As was shown in [2], for any values g, of vertex

charges with ¢,q,q, <0, there exist only two stationary points of the corresponding Coulomb potential (1).

By Morse equality both such stationary points are saddle points. Let us denote by D the mapping defined
on LC, which sends each point P to its T -conjugate P". Consider the image D(U j), where U, is the

component of L containing point P. By implicit differentiation of relations (3), (4) it is easy to verify that
mapping D is differentiable and locally one-to-one. Hence the set D(U j) is connected as the continuous

image of connected component U ; . From Theorem 1 follows that D(U j) should lie either in U itself or

in its conjugate component U ;. To find out which of these two possibilities is realized it is sufficient to

Bull. Georg. Natl. Acad. Sci., vol. 15, no. 3, 2021



On Equilibrium Points of Three Point Charges 11

compute the conjugate of just one point P, in U,. Direct computation shows that D(Pj) lies in the

conjugate component of U ; , which completes the proof.

Remark 2. From the local invertibility of D follows that D is a diffeomorphism between a component U,

and its conjugate component U, . Moreover, from the definition of D follows that the composition DD

is equal to the identity mapping of L. Thus we have constructed a natural differentiable involution acting
in the set L. An interesting problem is to investigate its behavior near the boundaries of components U e

It is easy to show that boundary points, i.e. the points lying in L\ A, are degenerate stationary points of their
stationary charges with respect to 7. So the behavior of D near such points should exhibit some kind of

bifurcation and it is interesting to describe its topological type and normal form. As a first step one could
investigate the behavior of D near each vertex 4,. Computations show that the boundaries of two conjugate

domains are mapped to each other in one-to-one manner and the situation has certain similarity with the
boundary behavior of conformal mappings although it can be shown that D is not conformal.

To illustrate Theorem 2 by we present some computations for a concrete regular triangle.

Example 2. Let T be a regular triangle with vertices (—1,0),(1, 0),(0,\/5 ) and let P= (0,2) be a point in
componentU, of L°. Stationary charges Q(P;T ) in this case are (—5\/5 /4,-5\5/ 4,1). From the fact
that there exist only two stationary points of Q(P;T ), and the symmetry with respect to Oy -axis follows
that the 7" -conjugate D(P) also lies on Oy -axis. Hence it is sufficient to find the ordinate y of P* which,

as can be easily seen should be a root of an algebraic equation:
3 4
(3 +1) -4y (y-3) =0. ()

Using Sturm's algorithm it is easy to verify that this equation has only two real roots. Solving it we get
that the values of roots: 2 (exact) and —0.1414 (approximate). So the second stationary point is

P = (O, —0.1414). Computing the values of hessian #, at these stationary points we get /, (P) =-1/5,
h, (P) =—-2587328/7226562. So both stationary points are non-degenerate saddles as was expected.

Performing the same computations for point P = (0, 4) we get
O(P:T)=(-5W17/216,-517 /216,1), P' =(0,-0.3375).

Thus we see that as the ordinate of point P grows the ordinate of point P’ decreases. In fact, this behavior
of conjugate point on Oy -axis can be rigorously proven. The same type of behavior is observed on other

lines passing through vertices of triangle 7, which can be used for investigating the boundary behavior of

mapping D near the vertices of T.

Remark 3. Using the same arguments as above one can obtain an analog of Theorem 2 in the case of an
isosceles right triangle studied in [2].

We notice that in the above examples the stationary charges of different signs have only two stationary

points which are non-degenerate saddles. So it is natural to wonder if three charges of different signs always
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have only two equilibrium points. This question seems to remain unanswered in the literature and we were
unable to solve this problem in general. However it can be answered positively in some special cases one
of which is given below.

Theorem 3. Three point charges of equal magnitudes with different signs at vertices of any non-degenerate
triangle have always two equilibrium points which are non-degenerate saddles.

Since by [3] the number of equilibrium points of non-equal charges in this case is two, this can be
proven using the same reasoning as in the proof of Theorem 2. This result gives some evidence to conjecture
that three point charges of different signs always have only two equilibrium points, which would prove an

important special case of Maxwells' conjecture for three point charges.
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