
saqarTvelos mecnierebaTa erovnuli akademiis moambe, t. 16, #2, 2022
BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 16, no. 2, 2022

© 2022 Bull. Georg. Natl. Acad. Sci.

Informatics

Robust Software Quality Assurance

Evangelos C. Papakitsos

University of West Attica, Greece

(Presented by Academy Member Ramaz Khurodze)

Software Quality Assurance is the overall activity of software evaluation, ensuring that an application
meets or exceeds predetermined standards of quality. This activity is conducted in all stages of
software development with the usage of inspections and testing methodologies, models and
techniques. Particular and important features of software, like the number of errors and efficiency
or complexity, are measured by applying related quality metrics. The preventive evaluation has a
high cost of performing, although much less than having to correct errors afterwards. This paper
briefly presents the relevant context and introduces the modified versions of an error monitoring
model and a complexity measurement, both being well-known and most verifiable. The scope of
modifications had been to considerably facilitate the evaluation process, adequately and with lower
cost, as tested by the author’s research teams in 20 software projects since 1992. © 2022 Bull. Georg.
Natl. Acad. Sci.

Software quality assurance, software quality metrics, software evaluation, software testing, complexity

Software Quality Assurance (SQA) consists of
these processes, techniques and tools applied by
professionals to ensure that software products meet
or exceed predetermined standards during the
Software Life Cycle (i.e., feasibility stage, analysis,
design, implementation, delivery/installation,
operation/maintenance and withdrawal). Without
the above standards, SQA does not guarantee that
any particular software product conforms to or
exceeds a minimum industrially or commercially
acceptable quality level. In other words, this is a
very wide activity, carried out by an independent
working group of programmers (different than
those who have developed the examined software
product), which is not involved in specific projects

and submits its reports directly to the company’s
administration. SQA is linked to the Software
Evaluation process, which is the technical part of
the software quality control, while SQA is the
administrative part.

The activity of SQA includes the definition of
the criteria (factors), according to which the
quality testing is performed, the approaches
followed for the definition and usage of these
criteria and finally the quality metrics or Software
Quality Metrics, where quantitative recording of
various important features of the software is
attempted. That is, it includes methodology,
standards and metrics.

24 Evangelos C. Papakitsos

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

Methodology

SQA planning includes the designing of
inspections/reviews, metrics and evaluation of
Software Development. During this process, it is
defined which criteria are important in each case,
while the rest are neglected. To accomplish the
above task, seven specific activities are performed:
• The technical methods and tools, which the

software product will be created with, are
identified.

• Inspections of the Development processes are
planned.

• The product is evaluated through software
testing.

• The official SQA standards and procedures are
enforced at all stages of software development.

• The process of software changes between the
different versions of the product, in the
Maintenance phase, is examined.

• Measurements of product properties are
performed.

• The relevant Documentation is prepared, which
includes the issuance of reports and the recor-
ding of a file for each activity of the quality
inspection.
The SQA process may in some cases impede

software development, due to arbitrary or
inappropriate options of executing the quality
inspection. The chief engineer must intervene so
that SQA supports rather than hinders the
production of software.

Software quality. A product of software techno-
logy consists of the software itself and its
documentation. Software quality is the cause of the
creation of the entire software application
development methodology and other activities of
the Software Life Cycle, such as the maintenance
process. Of course, there are evaluation principles
and techniques for each individual Life Cycle stage.
It is therefore necessary to define what software
quality is and how it is ensured.

Software quality is the product’s compliance
with [1]:
• explicitly stated operating and performance

requirements;
• explicitly recorded development specifications;
• properties that are expected and implied by

professionally produced software.
Then, the criteria of software quality are

formulated, but for which there is no commonly
accepted agreement. Thus, different views have
been expressed on the composition of the set of
criteria that determine the quality of software. The
most famous are according to Boehm et al. [2],
according to McCall [1] and FURPS (Functio-
nality, Usability, Reliability, Performance, Suppor-
tability; see [3]), the latter created by Hewlett-
Packard [4].

One way to classify the basic quality criteria is
into what interests the user (i.e., Usefulness,
Usability, Integrity, Efficiency, Correctness and
Reliability), also called “functional”, and what
interests the software maintainer (i.e., Portability,
Reusability and Maintainability), also called
“operational”. Some of the quality criteria and the
factors that make them up are directly measurable
(e.g., errors/KLOC), while others are indirectly
measurable (e.g., Usability) through other properties
and factors of the software to which they relate. Very
important functional criteria are the following:

Efficiency is the amount of computing
resources (processing speed, memory) required for
the operation of the software.

Correctness is the degree to which the product
shows correct results, according to the customer’s
requirements.

Reliability is whether the software provides
those critical or important services that its user
expects from it [2] considers Reliability as the most
important criterion of software quality, which for
certain reasons precedes Efficiency.

Software reviews. The design of software reviews
(inspections) is a quality assurance mechanism that

Robust Software Quality Assurance 25

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

includes the examination of the design and its
implementation by a quality-control team, in order
to find possible errors (inconsistencies, anomalies).
The conclusions of the review are recorded and
delivered to the chief engineer of the project, so that
their repair can follow. The reviews are carried out
under specific conditions, according to principles
and practices, while they are divided into three
categories: Production Management Reviews,
Design Reviews and Formal Technical Reviews.
These are conducted by creating a checklist for
each case [1], i.e., they are applied in all stages of
software production, following the established
methodology of Software Evaluation (see next
section).

An indication of the inspection cost for 100
lines of code (LOC) is two work-hours, i.e., one for
preparation and one for inspection. Inspections
must be short (two hours) to be effective, which
means that they must be performed frequently
during the software development process. The
inspection rates are given as follows:
• 400 LOC per hour from the quality-control

team;
• 100 LOC per hour from each member, during

the preparation or the review.
• The errors discovered are classified into three

categories:
• Non-critical ones, for which the cost of

correction is not justified in relation to their
severity, so no further action is taken.

• Repairable ones, which are presented to the
developer for repair.

• Critical ones, which require redesigning the
initial options.

Software Evaluation

Software Evaluation is the key activity for ensuring
the quality of a software product. It is carried out
through tests and inspections during the software
production stages, according to the two basic
principles [5]:

• To detect customer requirements.
• The tests should be planned long before they are

performed, as soon as the client’s requirements
are determined.
Evaluation has a high cost, because the design

of inspections is carried out in every component of
software development, with certain specifications.
However, a satisfied software user spreads his/her
opinion to eight other potential customers of the
specific software, while a dissatisfied user spreads
his/her dissatisfaction to 22 other potential
customers [3]. Therefore, the quality of software
products is an important goal of software
producers, despite the fact that product quality
control has high costs.

If we consider as unit the cost of repairing an
error that is discovered during the software design
phase, then the cost of repairing the same error:
• before the evaluation tests is 6.5 times larger,
• during the tests is 15 times larger,
• after the release of the product on the market is

67 times larger.
Thus, the relationship between costs with and

without preventive quality control is shaped
accordingly [1]. It is observed that the total relative
cost of repairing errors without preventive quality
control rises to 1577 units, in relation to the 682
cost units of preventive quality control.

There are international standards for the
preparation of evaluation documents developed by
the Institute of Electrical and Electronic
Engineering (IEEE), such as ANSI/IEEE std.830-
1984 (drafting of specifications), ANSI/IEEE
std.1016-1987 (drafting of design) and ANSI/IEEE
std.829-1983 (drafting of review documentation).

Evaluation categories. Evaluation is divided into
three categories, depending on the extent or
properties in which it is carried out [6]. Adequacy
Evaluation is the determination of the suitability of
a system for a purpose; it is considered whether it
will perform what is required of the system, how
well and at what cost; significant work is needed to

26 Evangelos C. Papakitsos

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

identify the customer's needs. Next, during Diag-
nostic Evaluation, an output profile of the system is
generated in relation to some possible input-field
classification; it is commonly used by the project
team and requires the creation of a large and
representative set of test data; it also includes
regression testing, where a comparison is made
between successive versions of the same system.
Finally, Performance Evaluation is the measure-
ment of the performance of the system in its
specific functions; criteria, metrics and evaluation
methods are formulated for each function:
• Criterion: What exactly is being evaluated (e.g.,

accuracy, speed, error rate).
• Metrics: What property of the system is

measured (e.g., speed, error rate etc.) and how.
• Method: How is the appropriate value determi-

ned for a given measurement of a tested system.
Evaluation is performed both on the individual

elements of a system (intrinsic) and on the whole
(extrinsic).

Evaluation processes. Software Validation is the
first out of three evaluation processes, by which the
developers answer the question: “Do we create the
right product”? In less complex systems, Validation
is performed at the analysis stage to ensure that the
product created is what the user requires (i.e., “the
right one”!), by checking the Specification Docu-
ment for its completeness, clarity and accuracy.
Thus, a detailed list is compiled of all system
factors that are checked against the previous
criteria. Also, correlation tables of the factors are
drawn up, where it is noted whether their
relationships were checked [1].

Software Verification is the second evaluation
process, by which the developers answer the
question: “Do we create the product correctly”?
Verification is performed at the design stage to
ensure that the product created is exactly what is
described in the Specification Document (i.e.,
“correct”!). The selection of the most appropriate
design method, the careful application of the design

principles and the completeness, clarity and
accuracy of the Design Document are the initial
requirements of this process. At the discretion of
the software engineer, at this stage, it is advisable
to create a simple prototype of the final product
(“prototyping”), which will be presented to the
user, and the basic functions of the system’s
interface will be evaluated. The application
algorithms are designed in this stage. A critical part
of Evaluation is checking the suitability of the
algorithms that perform the individual functions of
the application. This test is based on the properties
of the algorithms, for which there are both
evaluation criteria and metrics. After creating the
product’s Specifications, the inspection evaluates
whether the design implements these Specifications
[1]. The evaluation of design has the following
advantages:
• Errors are detected in time, before the implemen-

tation stage; this makes them cheaper to repair.
• It lasts and costs less than the evaluation of a

complete program.
• There are cases (such as the use of symbolic

programming languages) that is practically the
only possible way of Evaluation.
The Evaluation of the design and imple-

mentation stages, which is performed through
Verification, is static and mathematical. The former
is applied during software development, while the
latter is divided into formal (strict) and informal
(“Cleanroom”):
• Formal: The commands between an input point

and an output point undoubtedly lead to the
expected output.

• Informal: Software defects should be avoided
instead of detected and repaired; Informal
Mathematical Verification is an extremely
successful method, as it presents an error of
0.27% compared to 5% of the rest of the testing
methodology.
The third and last Evaluation process includes a

series of tests and inspections, until the final
product is delivered to the user.

Robust Software Quality Assurance 27

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

Quality Measurements

Conducting Formal Technical Reviews (see
subsection 2.2) is based on models describing the
creation and debugging of errors (“defects”),
during the software development stages. The
following is the presentation of the modified defect
amplification model [7, 8], which is a simplified
version of the defect amplification model (see [1]).
The hypothesis of the modified model is described
with the help of Fig. 1. At each stage of software
development, defects from the previous stage enter
the current one (Incoming = 10). These increase
according to the Amplification Factor (= 1.5),
forming the final number of defects due to the
previous stages:

Previous = Incoming × [Amplification Factor] =
= 10 × 1.5 = 15.

At the current stage, additional defects are
created (Current = 25), increasing their total (= 40).
The inspection carried out at the current stage
reveals a number of defects from the total,
proportional to the Detection Factor (= 0.5), which
are corrected. Thus, the defects that go to the next
stage are reduced accordingly (= 20):

Outgoing = Total – [Total × [Detection Factor]] =
= 40 – [40 × 0.5] = 40 - 20 = 20.

Fig. 1. The simplified defect amplification model.

The original defect amplification model [9]
classifies the incoming defects in two categories:
the ones that are amplified (according to the
amplification factor) and those that are not. Such a
distinction requires extra effort to discover them,
along with the associated cost, while it was found

unnecessary during the implementation of 20 small
to medium-size software projects, conducted by the
author and his research partners from 1992 to 2019.
Therefore, the modified model (Fig. 1) has been
devised for simplifying the inspection process
adequately.

The values of the Amplification and Detection
Factors are determined empirically. Especially for
the latter, it is considered that at each stage of
inspection 50% (= 0.5) of all defects can be
detected. Therefore, the reliability of such models
depends on the study of previous software
development projects. It is therefore the result of
experience, systematic collection and careful study
of the relevant data. In the above general context,
the software quality measurements are performed
according to the quality metrics.

Quality Metrics. Software Quality Metrics are
quantitative indicators that result from
measurements of various factors related to the
application produced. They apply to all three
aspects of creating the application, namely the
software itself, its documentation and production
management. Therefore, they are a means of
evaluating the entire production process. The
effective identification and selection of metrics
requires the collection of primary data during the
development process, which significantly burdens
the cost of production.

The measurements made are direct (cost,
workhours, number of errors, number of delivered
lines/commands – LOC/DSI, speed, memory size)
or indirect (Complexity, Efficiency, Reliability,
Maintainability etc.; see subsection 2.1). In indirect
measurement, another aspect is measured, which is
assumed to be related to the evaluated property,
expressed in the form of a mathematical formula or
model. The following measurements are an
indicative presentation of the crucial property of
Efficiency, for which exclusive quality metrics
have been created.

28 Evangelos C. Papakitsos

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

Efficiency Measurements. Software Efficiency
depends on the application’s code. It can be
measured directly (as the time of execution of the
product’s functions on a given machine and with
the required memory) and indirectly. Indirect
metrics often appear in the literature as “Software
Quality Metrics” and complexity. The design of
quality metrics is intended to quantify product
features, preferably in an automated manner. The
most important feature is considered to be the
complexity of the product. The software quality and
complexity metrics are more than 100. The best
known and most verifiable are the following three:
• According to Gilb & Hanren, where Logical Com-

plexity is measured, depending on the number of
selection commands (Gilb) or the number of
repeat commands with the software operators
(Hanren). The result of this metric has been found
to be proportional to the cost of the product.

• According to Halstead (Halstead’s Software
Science; see [10]), where various properties of
software are measured, such as: the number of
unique operators (=, IF, AND, < etc.), the
number of unique operands (x, i, j, 3, k etc.), the
total number of occurrences of operators, the
total number of occurrences of operands etc.

• According to McCabe [11], where the Cycloma-
tic Number is calculated as a measure of the com-
plexity of the algorithm for controlling the data
flow, as well as giving a measure of the amount
of required test data. From the directed graph
(“flowgraph”) of the algorithm (G) the Cycloma-
tic Number V(G) is calculated as follows:

V(G) = [number of edges] - [number of nodes] + 2
or

V(G) = [number of enclosed regions] + 1.

An example of calculating V(G) is given using
the flowgraph of the algorithm in Fig. 2 [12], which
includes six nodes {m, k, e, r, p, w} and 11 edges:
{(m, k), (m, w), (k, e), (k, r), (e, e), (e, r), (r, w),
(r, p), (p, p), (p, w), (p, e)}. Therefore, according to
the first calculation method:

V(G) = 11 - 6 + 2 = 7.

Fig. 2. The flowgraph of an algorithm.

In addition, the graph defines six enclosed

regions (in curly brackets below), bounded by the
following edges:
• {(m, k), (m, w), (k, r), (r, w)}
• {(e, e)}
• {(k, e), (k, r), (e, r)}
• {(r, w), (r, p), (p, w)}
• {(p, p)}
• {(e, r), (r, p), (p, p), (p, e)}.

According to the second method of calculation:
V(G) = 6 + 1 = 7.

Experimental studies indicate that there is a
direct correlation between cyclomatic complexity,
expressed through V(G), both to the number of
errors appearing in the code and in the time that
takes to discover and correct them. A software
module is considered complex and difficult to
control when the value V(G) > 10. Finally,
Cyclomatic Number V(G) is the only metric that
can be calculated at the software design stage, and
therefore be used proactively in product quality
control. The remaining metrics are calculated a
posteriori, i.e., after the implementation of the code,
where it may be too late for important
interventions. Therefore, only during the
maintenance of software can they be useful, as well
as in the accumulation of know-how for future
projects.

Robust Software Quality Assurance 29

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

Cyclomatic Number V(G) gives a measure of
the amount of the required test data, whose purpose
is to check every path of the flowgraph, namely, a
piece of data for each path. The flowgraph of Fig. 2
directly depicts 11 edges from node {m}
(initial/start) to node {w} (final/end). Yet, these 11
edges initially correspond to 18 different paths of
the algorithm that have to be tested, while the actual
paths of the particular processing problem are no
more than 26, excluding edge {(p, e)} that may
repeat the previous process. The total combination
of paths can be huge (around 457,000), mainly due
to edges {(e, e), (p, p), (p, e)} that correspond to
loops. Indicatively, an algorithm of just 100 LOC,
depicted by a flowgraph of 11 nodes and 15 edges
that contains a single loop of 20 iterations, has
approximately 100 trillion possible paths [1]. Such
magnitudes are impossible to be tested.
Nevertheless, each loop has to be tested for five
values, namely:
• a value below the lower limit of iteration,
• the value of the lower limit of iteration,
• a value above the upper limit of iteration,
• the value of the upper limit of iteration,
• an intermediate value between the lower and

upper limits of iteration.
Therefore, it is suggested herein that each loop

should correspond to five regions or edges,
formulating the Extended Cyclomatic Number
EV(G). In this case, the flowgraph of Fig. 2, having
three loops, contains 18 enclosed regions or 23
edges with EV(G) = 19, which is a value much
closer than V(G) = 7 to either the 18 initial or the
26 actual paths that have to be tested, thus allowing
more accurately the selection of test data.

Conclusion

SQA includes processes, techniques and criteria
that are applied by software engineers for
performing the quality testing, which ensures that
software products conform to a minimum
acceptable quality level or exceed it. Software
Evaluation is the main process for ensuring the

quality of software, carried out through tests and
inspections during the production stages. Software
Evaluation has a high cost, nevertheless, the total
relative cost of repairing errors without preventive
quality testing rises to 1577 units, in relation to the
682 units of preventive quality testing. Therefore,
the quality of software products is an important
goal of producers, despite the high cost of Software
Evaluation. The Evaluation process includes a
series of quality inspections through measurements
and metrics.

The quality inspections are based on models
that describe the creation and correction of errors.
Such a model is the defect amplification model that
classifies the incoming errors from a previous stage
of software development to the current one in those
amplified (according to a factor) and those that are
not. Then, at the current stage additional errors are
created, thus forming a total number of them. The
inspection reveals a number of errors from the total
that are proportional to a detection factor, which are
corrected, therefore reducing accordingly the errors
that go to the next stage. The amplification and
detection factors are determined empirically. To
avoid the additional effort and cost required for
distinguishing the incoming errors in two classes,
the simplified defect amplification model has been
devised that proposes a single class of incoming
errors, modifying the amplification factor
accordingly.

Another crucial aspect of quality inspections is
the measurement of Software Efficiency, which
depends on the application’s code, especially
regarding the feature of software complexity. This
measurement is conducted through quality metrics
that are quantitative indicators describing the
evaluated feature (i.e., complexity). One of the best
known and most verifiable complexity metrics is
the Cyclomatic Number V(G) of McCabe, which is
calculated through the flowgraph of the algorithm
inspected, giving a measure of the amount of
required test data. V(G) is extremely important for
being the only metric that can be used proactively,

30 Evangelos C. Papakitsos

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

since it can be calculated at the design stage of
software. Yet, the calculated V(G) is not close
enough to the algorithmic paths that have to be
tested. Therefore, the Extended Cyclomatic
Number EV(G) has been introduced herein,
additionally considering the standard practices for
testing loops. The value of EV(G) is much closer to
the actual number of algorithmic paths to be tested.

Both modified techniques of evaluation
presented herein (i.e., the simplified defect
amplification model and the Extended Cyclomatic
Number) have been tested by the author and his
research partners during the implementation of 20
small to medium-size software projects conducted
from 1992 to 2019. Their usage may facilitate the
inspection process adequately.

ინფორმატიკა

პროგრამული უზრუნველყოფის ხარისხის საიმედო
უზრუნველყოფა

ე. პაპაკიტსოსი

დასავლეთ ატიკის უნივერსიტეტი, ატიკა

(წარმოდგენილია აკადემიის წევრის რ. ხუროძის მიერ)

პროგრამული უზრუნველყოფის ხარისხის უზრუნველყოფა წარმოადგენს პროგრამული
უზრუნველყოფის შეფასების კომპლექსურ მოქმედებას, რომელიც იძლევა იმის გარანტიას,
რომ აპლიკაცია მინიმუმ, აკმაყოფილებს ხარისხის წინასწარ დადგენილ სტანდარტებს.
აღნიშნულ ქმედებას მიმართავენ პროგრამული უზრუნველყოფის შემუშავების ყველა ეტაპზე
და იგი ხორციელდება შემოწმებისა და ტესტირების მეთოდოლოგიების, მოდელებისა და ტექ-
ნიკის გამოყენებით. პროგრამული უზრუნველყოფის გამორჩეული და მნიშვნელოვანი მახა-
სიათებლები, როგორიცაა შეცდომების რაოდენობა და ეფექტურობა, ანუ სირთულე, იზომება
ხარისხის შესაბამისი პარამეტრების გამოყენებით. პროფილაქტიკური შემოწმება საკმაოდ
დიდ თანხებთანაა დაკავშირებული, თუმცა აღნიშნული ხარჯი გაცილებით ნაკლებია შესაძ-
ლო შეცდომების გამოსწორების ხარჯებზე. წინამდებარე ნაშრომში მოკლედაა აღწერილი
პრობლემატიკა, წარმოდგენილია შეცდომის სიგნალის მონიტორინგის მოდელის მოდიფიცი-
რებული ვერსიები და სირთულის გაზომვის აღიარებული და სარწმუნო მეთოდები. მოდი-
ფიკაციების მიზანს წარმოადგენდა შეფასების პროცესის მნიშვნელოვნად გამარტივება სათა-
ნადოდ და შედარებით ნაკლები დანახარჯით, რაც შესწავლილ იქნა ავტორის ხელმძღვანე-
ლობის ქვეშ მყოფი მკვლევართა ჯგუფების მიერ 1992 წლიდან დღემდე შესრულებული
პროგრამული უზრუნველყოფის ოცი პროექტის ფარგლებში.

Robust Software Quality Assurance 31

Bull. Georg. Natl. Acad. Sci., vol. 16, no. 2, 2022

REFERENCES

1. Pressman R. (1987) Software Engineering: a practitioner's approach. McGraw-Hill, London.
2. Sommerville I. (1989) Software Engineering (3rd edition). Addison-Wesley, Wokingham.
3. Gialelis N.K., Dimitriadis P.D., Kalergis S.C., Kastania N.A., Katopodis K.I., Koulas R.P., Oikonomou G.T.

(1999) Software applications (2nd edition). Pedagogical Institute, Athens (in Greek).
4. Grady R.B., Caswell D.L. (1987) Software Metrics: Establishing a Company-wide Program. Prentice-Hall.
5. Davis A. (1995) 201 Principles of software development. McGraw-Hill International.
6. Cole R., Mariani J., Uszkoreit H., Varile G.B., Zaenen A., Zampolli A., Zue V. (1997) Survey of the state of the

art in Human Language Technology (Web Edition). Cambridge University Press & Giardin.
7. Papakitsos E.C. (2012) Quality assurance of linguistic computing products. “Technoglossia” MSc Programme in

Linguistic Computing of the National & Kapodistrian University of Athens and National Technical University
of Athens, Greece [in Greek].

8. Papakitsos E.C. (2013) Linguistic software engineering: I. preparation. Athens: ISBN 978-960-93-5636-7 [in
Greek].

9. IBM (1981) Implementing software inspections (course notes). IBM Systems Sciences Institute, IBM
Corporation.

10. Halstead M. (1977) Elements of Software Science. North Holland.
11. McCabe T. (1976) A software complexity measure. IEEE Trans. Software Engineering, 2: 308-320.
12. Papakitsos E.C. (2000) Contribution to the morphological processing of Modern Greek: functional

decomposition – Cartesian Lexicon. Doctoral Thesis, Dept. of Informatics & Telecommunications, National &
Kapodistrian University of Athens, Greece (in Greek).

Received April, 2022

