Mathematics

On the Power of One Goodness-of-Fit Test Based on Square Deviations between Chencov Type Estimators of Distribution Density in $p \ge 2$ Independent Samples

Petre Babilua*, Elizbar Nadaraya*,**

A goodness-of-fit test is constructed based on projection type estimates of distribution density. The limiting power of the constructed goodness-of-fit test is stated for Pitman types of "close" alternatives. © 2024 Bull. Georg. Natl. Acad. Sci.

Goodness-of-fit test, projection estimator, limit distribution, power

Let $X^{(i)} = \left(X_1^{(i)}, \dots, X_{n_i}^{(i)}\right)$, $i = 1, \dots, p$, be independent samples of size n_1, n_2, \dots, n_p , from p $(p \ge 2)$ general populations with distribution densities $f_1(x), \dots, f_p(x)$. Let, further, $L_2(r)$ be the space of functions with square-integrable measure μ , $d\mu = r(x)dx$ and $\{\varphi_i(x)\}$ be complete orthonormal system in this space.

Suppose that the desired density $f_i(x) \in L_2(r)$, i = 1,..., p. Based on independent samples $X^{(i)}$, i = 1,..., p, construct projection estimates for unknowns $f_i(x)$

$$\hat{f}_i(x) = \sum_{j=1}^{\lambda_i(n_i)} \hat{\alpha}_j(i) \varphi_j(x), \quad \hat{\alpha}_j(i) = \frac{1}{n_i} \sum_{k=1}^{n_i} \alpha_j(X_k^{(i)}),$$

$$\alpha_j(x) = \varphi_j(x) r(x), \quad \lambda_i(n_i) = o(n_i), \quad i = 1, \dots, p.$$
(1)

Projection estimate of distribution density (1) was first introduced and studied by Chencov N. N. [1]. In the present paper, we consider the problem of testing the simple hypothesis, according to which

$$H_0: f_1(x) = f_2(x) = \dots = f_p(x) \equiv f_0(x),$$

 $(f_0(x))$ is a given density function) against Pitman type "close" alternatives:

$$H_1: f_i(x) = f_0(x) + \alpha(n_0)\psi_i(x),$$
 (2)

^{*}Department of Mathematics, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia

^{**}Academy Member, Georgian National Academy of Sciences, Tbilisi, Georgia

$$\alpha(n_0) \to 0$$
, $n_0 = \min(n_1, ..., n_p) \to \infty$, $\int \psi_i(x) dx = 0$,
 $\psi_i(x) \in L_2(r)$, $i = 1, ..., p$.

For testing this hypothesis, we consider criterion of testing hypothesis based on statistic [2]:

$$T(n_{1},...,n_{p}) = \sum_{i=1}^{p} N_{i} \int \left[\hat{f}_{i}(x) - \frac{1}{N} \sum_{j=1}^{p} N_{j} \hat{f}_{j}(x) \right]^{2} r(x) dx,$$

$$N_{i} = \frac{n_{i}}{\lambda_{i}}, \quad i = 1,...,p, \quad N = N_{1} + \dots + N_{p},$$
(3)

describing the mutual deviation of estimates $\hat{f}_i(x)$, i = 1,...,p, from each other. In particular case, when p = 2 the statistic T takes more explicit form

$$T(n_1, n_2) = \frac{N_1 N_2}{N_1 + N_2} \int \left[\hat{f}_1(x) - \hat{f}_2(x) \right]^2 r(x) dx.$$

This particular case was considered in [3].

Let us consider the question about the limiting law of the distribution of statistic (3) for the hypothesis H_1 , when n_i tends to infinity so that $n_i = nk_i$, where $n \to \infty$ and k_i are constants. Let $\lambda_1 = \lambda_2 = \cdots = \lambda_p = \lambda(n)$, where $\lambda(n) \to \infty$ as $n \to \infty$.

Assumptions: $r(x)\varphi_j(x)$, j=1,2,..., have bounded variations $V_j < \infty$, $r(x)f_0(x)$, $r(x)\psi_i(x)$ are bounded, and r(x) is integrable.

Notations:

$$\Delta_{n}(f_{0}) = \frac{1}{\lambda_{n}} \sum_{j=1}^{\lambda_{n}} \int \alpha_{j}^{2}(x) f_{0}(x) dx, \quad \lambda_{n} \equiv \lambda(n),$$

$$\sigma_{n}^{2}(f_{0}) = \frac{2}{\lambda_{n}} \sum_{i=1}^{\lambda_{n}} \sum_{j=1}^{\lambda_{n}} \left(\int \alpha_{i}(x) \alpha_{j}(x) f_{0}(x) dx \right)^{2},$$

$$K_{n}(x, y) = \sum_{i=1}^{\lambda_{n}} \varphi_{j}(x) \varphi_{j}(y) r(y),$$

$$d_{n} = \sum_{i=1}^{\lambda_{n}} \varphi_{i} V_{i}, \quad \varphi_{i} = \sup_{x} |\varphi_{i}(x)|,$$

$$S_{n}(m) = \lambda_{n}^{-m} \int \cdots \int K_{n}(t_{1}, t_{2}) K_{n}(t_{2}, t_{3}) \cdots K_{n}(t_{m}, t_{1}) \cdot f_{0}(t_{1}) \cdots f_{0}(t_{m}) r(t_{1}) \cdots r(t_{m}) dt_{1} \cdots dt_{m}.$$

The following is true.

Theorem. Let
$$\Delta_n(f_0) = \mu(f_0) + o(\lambda_n^{-1/2})$$
, $\sigma_n^2(f_0) = \sigma^2(f_0) + o(\lambda_n^{-1/2})$ as $n \to \infty$ and for all $m \ge 3$, $Q_n(m) \equiv \lambda_n^{m-1} S_n(m) = O(1)$, $n \to \infty$.

Then if there is such a $0 < \delta_0 < 1$ that

$$n^{-1/2}d_n\ln n\to 0, \quad \alpha_nd_n^2\to 0 \quad \left(\alpha_n=\alpha\left(n_0\right)\right)$$

for $\lambda_n=n^\delta$, $0<\delta\leq\delta_0$ and $\alpha_n=n^{\left(\delta-2\right)/4}$, , then for the alternative H_1

$$\lambda_n^{1/2} (T_n - \mu_0) \xrightarrow{d} N(A(\psi), \sigma_0^2),$$

where

$$A(\psi) = \sum_{i=1}^{p} k_{i} \int \left[\psi_{i}(x) - \frac{1}{\overline{k}} \sum_{j=1}^{p} k_{j} \psi_{j}(x) \right]^{2} r(x) dx,$$

$$\mu_{0} = (p-1) \mu(f_{0}), \quad \sigma_{0}^{2} = 2(p-1) \sigma^{2}(f_{0}),$$

$$\overline{k} = k_{1} + \dots + k_{p}, \quad p \ge 2.$$

d denotes the convergence in distribution and $N(a,b^2)$ – normally distributed random variable with mathematical expectation a and variance b^2 .

Corollary 1. Let

$$\Delta_n(f_0) = \mu(f_0) + o(\lambda_n^{-1/2}),$$

$$\sigma_n^2(f_0) = \sigma^2(f_0) + o(\lambda_n^{-1/2}) \quad as \quad n \to \infty,$$

and for all $m \ge 3$

$$Q_n(m) = \lambda_n^{m-1} S_n(m) = O(1).$$

If

$$\frac{d_n \ln n}{\sqrt{n}} \to 0,$$

then random variable $\lambda_n^{1/2}(T_n - \mu_0)$ for the hypothesis H_0 has normal distribution $N(0, \sigma_0^2)$ [2].

Based on corollary, we can construct criterion for testing hypothesis H_0 . Critical domain for testing this hypothesis can be established by the inequality

$$T_n \ge d_n(\alpha),$$
 (4)

where $d_n(\alpha) = \mu_0 + \lambda_n^{-1/2} \sigma_0 \varepsilon_\alpha$, ε_α , ε_α is the quantile of the level $1 - \alpha$ $(0 < \alpha < 1)$ of a standard normal distribution $\Phi(x)$.

Corollary 2. Under conditions of theorem local behavior of the power $P_{H_1}(T_n \ge d_n(\alpha))$ is as follows

$$P_{H_1}(T_n \ge d_n(\alpha)) \longrightarrow 1 - \Phi\left(\varepsilon_{\alpha} - \frac{A(\psi)}{\sigma_0}\right),$$

where

$$A(\psi) = \sum_{i=1}^{p} k_i \int \left[\psi_i(x) - \frac{1}{\overline{k}} \sum_{j=1}^{p} k_j \psi_j(x) \right]^2 r(x) dx,$$

$$\overline{k} = k_1 + k_2 + \dots + k_p, \quad p \ge 2.$$

It should be noted that criterion (4) for testing hypothesis H_0 against alternatives type (2) is asymptotically strictly unbiased, since $A(\psi) > 0$, and is equal to 0 if and only if

$$\psi_1(x) = \psi_2(x) = \cdots = \psi_p(x).$$

Example. Let $-\pi \leq X_1^{(i)} \leq \pi$, $i=1,\ldots,p$ and $\varphi_j\left(x\right)$, $j=1,2,\ldots$, —system of trigonometric functions on $\left[-\pi,\pi\right]$. It is easy to see $d_n=O\left(\lambda_n^2\right)$. The conditions $\frac{d_n \ln n}{\sqrt{n}} \to 0$, $\alpha_n d_n^2 \to 0$ for $\lambda_n=n^\delta$, $\alpha_n=n^{-1/2+\delta/4}$ are met if $0<\delta<\delta_0=\frac{2}{17}$.

Further, assuming that $f_0'(x)$ is bounded and use the method of proving of Theorem 3.9 from [4: 151], we get

$$\Delta(f_0) = \frac{1}{2\pi} + o\left(\frac{1}{\sqrt{\lambda_n}}\right),$$

$$\sigma_n^2(f_0) = \frac{1}{\pi} \int_{-\pi}^{\pi} f_0^2(x) dx + o\left(\frac{1}{\sqrt{\lambda_n}}\right),$$

$$|Q_n(m)| \le c_1 \lambda_n^{-1} (L_n)^m, \quad m \ge 3,$$

and $L_n \Box 4\pi^{-2} \ln \lambda_n$ — Lebesgue constant [4]. In this case critical domain (4) will be

$$T_n \ge (p-1) \cdot \frac{1}{2\pi} + \left[2(p-1)\right]^{1/2} \varepsilon_\alpha \cdot \lambda_n^{-1/2} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f_0^2(x) dx\right)^{1/2}.$$

მათემატიკა

განაწილების სიმკვრივის ჩენცოვის ტიპის შეფასებების კვადრატულ გადახრებზე დაფუმნებული ერთი თანხმობის კრიტერიუმის სიმძლავრის შესახებ $p \geq 2$ დამოუკიდებელ შერჩევაში

პ. ბაბილუა*, ე. ნადარაია^{*,**}

აგებულია განაწილების სიმკვრივის პროექციულ შეფასებებზე დაფუძნებული თანხმობის კრიტერიუმი. მოძებნილია აგებული თანხმობის კრიტერიუმის ზღვარითი სიმძლავრე პიტმანის ტიპის დაახლოებადი ალტერნატივებისთვის.

REFERENCES

- Chencov N. N. (1962) A bound for an unknown distribution density in terms of the observations. Dokl. Akad. Nauk SSSR 147: 45-48.
- 2. Babilua P. K., Nadaraya E. A. (2023) On the limit distribution of integral square deviation between projection type estimators of distribution density in $p \ge 2$ independent samples. *Bull. Georg. Natl. Acad. Sci.*, (N.S.) 17, 4: 15-19.
- 3. Mirzakhmedov M. A. (1982) Nonparametric estimation of a probability density by orthonormal functions. *Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk*, 4: 21-25 (in Russian).
- 4. Zigmund A. (1965) Trigonometricheskie serii (Trigonometric Series). Vols. I, II. Izdat. "Mir", M. (in Russian).

Received October, 2024

^{*} ივანე ჯავახიშვილის სახ. თბილისის სახელმწიფო უნივერსიტეტი, ზუსტ და საბუნებისმეტყველო მეცნიერებათა ფაკულტეტი, მათემატიკის დეპარტამენტი, თბილისი, საქართველო

^{**}აკადემიის წევრი, საქართველოს მეცნიერებათა ეროვნული აკადემია, თბილისი, საქართველო