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ABSTRACT. Let G be a simple graph of order n. The domination polynomial of G is the polynomial

=1
( , ) = ( , )n i

i
D G x d G i x , where d(G, i) is the number of dominating sets of G of size i. The n-barbell

graph Barn with 2n vertices, is formed by joining two copies of a complete graph Kn by a single edge. We
prove that for every 2n  , Barn is not D-unique, that is, there is another non-isomorphic graph with the
same domination polynomial. More precisely, we show that for every n, the D-equivalence class of barbell
graph, [Barn], contains many graphs, which one of them is the complement of book graph of order n - 1,

1
c
nB  . Also we present many families of graphs in D-equivalence class of 

1 2n n nk
K K K   . © 2016

Bull. Georg. Natl. Acad. Sci.
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1. Introduction

All graphs in this paper are simple of finite orders, i.e., graphs are undirected with no loops or parallel edges
and with finite number of vertices. The complement of a graph G, is a graph with the same vertex set as G and
with the property that two vertices are adjacent in Gc if and only if they are not adjacent in G and is denoted
by Gc. For any vertex ( )v V G , the open neighborhood of v  is the set ( ) = { ( ) | ( )}N v u V G uv E G   and

the closed neighborhood of v  is the set [ ] = ( ) { }N v N v v . For a set ( )S V G , the open neighborhood of

S is ( ) = ( )
v S

N S N v
  and the closed neighborhood of S is [ ] = ( )N S N S S . A set ( )S V G  is a

dominating set if [ ] =N S V , or equivalently, every vertex in ( ) \V G S  is adjacent to at least one vertex in S.

The  domination number ( )G , is the minimum cardinality of a dominating set in G. For a detailed treatment

of domination theory, the reader is referred to [1]. Let ( , )D G i  be the family of dominating sets of a graph G

with cardinality i and let ( , ) =| ( , ) |d G i D G i .

 The domination polynomial ( , )D G x  of G is defined as 
| ( )|
= ( )

( , ) = ( , )V G i
i G

D G x d G i x
  (see [2-4]). This
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Fig. 1. The book graph nB

polynomial is the generating polynomial for the number of dominating sets of each cardinality. Calculating
the domination polynomial of a graph G is difficult in general, as the smallest power of a non-zero term is the

domination number ( )G  of the graph, and determining whether ( )G k   is known to be NP-complete [5].

But for certain classes of graphs, we can find a closed form expression for the domination polynomial.
Two graphs G and H are said to be  dominating equivalent, or simply D-equivalent, written ~G H , if

( , ) = ( , )D G x D H x . It is evident that the relation ~  of being  D-equivalence is an equivalence relation

on the family     of graphs, and thus      is partitioned into equivalence classes, called the D-equivalence
classes. Given G     , let

[ ] = { : ~ }.G H H G
We call [G] the equivalence class determined by G. A graph G is said to be dominating unique, or simply

D-unique, if [ ] = { }G G  [6]. Determining D-equivalence class of graphs is one of the interesting problems on

equivalence classes. A question of recent interest concerning this equivalence relation ][  asks which
graphs are determined by their domination polynomial. It is known that cycles [2] and cubic graphs of order
10 [7] (particularly, the Petersen graph) are, while if 0( 3)n mod , the paths of order n are not [2]. In [8],

authors completely described the complete r-partite graphs which are D-unique. Their results in the bipartite
case, settles in the affirmative a conjecture in [9].

Let n be any positive integer and nBar  be n-barbell graph with 2n vertices which is formed by joining two
copies of a complete graph Kn by a single edge. In this paper, we consider n-barbell graphs and study their
domination polynomials. We prove that for every 2n  , nBar  is not D-unique. More precisely, in Section 2,
we show that for every n, [ ]nBar  contains many graphs, which one of them is n nK K  and another one is
the complement of book graph of order 1n  , 1

c
nB  . In Section 3, we present many graphs in

1 2
[ ]n n nk
K K K   .

2.  D-Equivalence Classes of some Graphs

     In this section, we study the D-equivalence classes of some graphs. First we consider the domination
polynomial of the complement of book graph. The n-book graph Bn can be constructed by bonding n  copies
of the cycle graph C4 along a common edge {u, v}, see Fig. 1.

The following theorem gives a formula for the domination polynomial of  Bn.
Theorem 2.1  [10] For every nN ,

2 2 2( , ) = ( 2 ) (2 1) ( 1) 2 .n n n
nD B x x x x x x x    

Domination polynomials, exploring the nature and location of roots of domination polynomials of book
graphs has studied in [10]. Here, we consider the domination polynomial of the complement of the book
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graphs. We shall prove that the n -barbell graph nBar  and 1
c
nB   have the same domination polynomial.

The Turán graph ( , )T n r  is a complete multipartite graph formed by partitioning a set of n vertices into r
subsets, with sizes as equal as possible, and connecting two vertices by an edge whenever they belong to

different subsets. The graph will have (n mod r) subsets of size n
r
  , and (   )r n mod r  subsets of size 

n
r
  .

That is, a complete r-partite graph

, , , ,
.n n n n

r r r r

K
       

The Turán graph (2 , )T n n  can be formed by removing a perfect matching, n edges no two of which are

adjacent, from a complete graph 2nK . As Roberts (1969) showed, this graph has boxicity exactly n; it is

sometimes known as the Robert’s graph [11]. If n  couples go to a party, and each person shakes hands with
every person except his or her partner, then this graph describes the set of handshakes that take place; for
this reason it is also called the cocktail party graph. So, the cocktail party graph ( )CP t  of order 2t  is the

graph with vertices 1 2 2, , , tb b b  in which each pair of distinct vertices form an edge with the exception of the

pairs 1 2 3 4 2 1 2{ , },{ , }, ,{ , }t tb b b b b b . The following result is easy to obtain.

Lemma 2.2  For every nN , 2( ( ), ) = (1 ) 2 1nD CP n x x nx   .

Fig. 2 shows the complement of the book graph c
nB .

 The vertex contraction G / u of a graph G by a vertex u is the operation under which all vertices in ( )N u
are joined to each other and then u is deleted (see[12]).

The following theorem is useful for finding the recurrence relations for the domination polynomials of
arbitrary graphs.

Theorem 2.3  [13, 14] Let G be a graph. For any vertex u in G we have
( , ) = ( / , ) ( , ) ( [ ], ) (1 ) ( , ),uD G x xD G u x D G u x xD G N u x x p G x     

Fig. 2. Complement of the book graph c
nB
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where ( , )up G x  is the polynomial counting the dominating sets of G u  which do not contain any vertex of

( )N u  in G .

The following theorem gives a formula for the domination polynomial of the complement of the book
graph.

Theorem 2.4  For every nN ,
1 2( , ) = ((1 ) 1) .c n

nD B x x  

Proof.  Consider graph c
nB  and vertex v  in the Fig. 2. By Theorem 2.3, we have:

( , ) = ( / , ) ( , ) ( [ ], ) (1 ) ( , )c c c c c
n n n n v nD B x xD B v x D B v x xD B N v x x p B x     

2
1 1= ( 1) ( , ) ( , ) (1 )( ( , ) ( 1) )c

n n nx D B v x xD K x x D K x n x nx        

1= ( 1) ( , ) ( , ) (1 )(1 (1 ))c
n nx D B v x D K x x x n x      

1= ( 1) ( , ) ((1 ) 1) (1 )(1 (1 )),c n
nx D B v x x x x n x        

 where ( / )c c
n nB v B v  .

Now, we use Theorem 2.3 to obtain the domination polynomial of the graph c
nB v . We have

( , ) = ( / , ) (( ) , )c c c
n n nD B v x xD B v u x D B v u x    

(( ) [ ], ) (1 ) ( , ).c c
n u nxD B v N u x x p B v x     

 Since ( / ) ( ) ( )c c
n nB v u B v u CP n      and using Lemma 2.2, we have

( , ) = ( 1) ( ( ), ) ( ( , )) (1 )( ( , ) )c
n n nD B v x x D CP n x x D K x x D K x nx     

= ( 1) ( ( ), ) ( , ) (1 )nx D CP n x D K x nx x   

2= ( 1)((1 ) (1 2 )) ((1 ) 1) (1 )n nx x nx x nx x        

1= (1 ) ((1 ) 1) (1 ) .n nx x nx x x     

 Consequently,
1( , ) = ( 1)((1 ) ((1 ) 1) (1 ) )c n n

nD B x x x x nx x x      

1((1 ) 1) (1 )(1 (1 ))nx x x n x      

1 2= ((1 ) 1) .nx  

The n-barbell graph is the graph on 2n vertices which is formed by joining two copies of a complete graph
Kn by a single edge, known as a bridge, shown in Fig. 3. We denote this graph by Barn. For this graph, we shall

Fig. 3. The barbell graph of order 16, 8Bar
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calculate this domination polynomial. We need the following definition and theorems.
An irrelevant edge is an edge ( )e E G , such that ( , ) = ( , )D G x D G e x , and a vertex ( )v V G  is

domination-covered, if every dominating set of G – v includes at least one vertex adjacent to v in G [14]. We
need the following theorems to obtain the domination polynomial of barbell graph Barn.

Theorem 2.5 [14] Let = ( , )G V E  be a graph. An vertex v V  of G is domination-covered if and only if

there is a vertex [ ]u N v  such that [ ] [ ]N u N v .

Theorem 2.6 [14] Let = ( , )G V E  be a graph. An edge = { , }e u v E  is an irrelevant edge in G, if and
only if u and v are domination-covered in G – e.

Theorem 2.7  For every 2n   and nN ,
2( , ) = ((1 ) 1) .n

nD Bar x x 

Proof.  Let e be an edge joining two Kn in barbell graph. By Theorem 2.5 two end vertices of edge e are
domination-covered in nBar e . So, by Theorem 2.6 the edge e is an irrelevant edge of nBar . Therefore

2( , ) = ( , ) = ( , ) = ((1 ) 1) .n
n n n nD Bar x D Bar e x D K K x x   

The following corollary is an immediate consequence of Theorems 2.4 and 2.7.

Corollary 2.8  For each natural number n, nBar  and 1
c
nB   have the same domination polynomial. More

precisely, for every n, 1[ ] { , , }c
n n n n nBar Bar B K K  , and 1 1[ ] { , , }c c

n n n n nB Bar B K K   .

Here, we present some other families of graphs whose are in the [ ]nBar . Let define the generalized barbell

graphs. As we know, the nBar  is formed by joining two copies of a complete graph Kn by a single edge. Wee

like to join two copies with more edges as follows:
Definition 2.9 Suppose that 1{ ,..., }nu u  and 1{ ,..., }nv v  are the vertices of two copies of complete graph

of order n, Kn and nK . The generalized barbell graph is denoted by ,n tBar  and is a graph with

, 1 1( ) = { ,..., } { ,..., }n t n nV Bar u u v v  and

,( ) = ( ) ( ) { |1 1,1 1},n t n n i jE Bar E K E u v i n j n       K

where | { |1 1,1 1} |=i ju v i n j n t      .

As examples see two non-isomorphic graphs 3,2Bar  in Fig. 4. Notice that 1
c
nB   is one of the specific case

of ,( 1)( 2)n n nB   . The left graph in Fig. 4, is 2
cB .

We have the following theorem.

Fig. 4. Two generalized barbell graphs 3,2Bar
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Theorem 2.10  For every 3n   and t N ,
2

,( , ) = ((1 ) 1) .n
n tD Bar x x 

Proof.  We prove this Theorem by induction on t. Suppose that = 1t , Then by Theorem 2.7, the result

holds. Assume that the result holds for 2= ( 1) 1t n  . Let 2= ( 1)t n  and e be the additional edge of ,n tBar

to the , 1n tBar  . By Theorem 2.5 two end vertices of edge e are domination-covered in nBar e . So, by

Theorem 2.6 the edge e  is an irrelevant edge of , 1n tBar  . Therefore by the induction hypothesis we have the

result.
The following corollary is an immediate consequence of Theorems 2.7 and 2.10.

Corollary 2.11 For each natural number n and 2( 1)t n  , nBar  and ,n tBar  have the same domination

polynomial.
The following example shows that, except for the generalized barbell graphs, there are other graphs in D-

equivalence classes of nBar .

Example 2.12  All connected graphs in 3[ ]Bar  are the graphs 3 3,2 3,3 3,4, , , Bar Bar Bar Bar  and two

graphs in Fig. 5.

3. Some Graphs in 1 2
[ ]n n nk
K K K  

We observed that, for each natural number n and 2( 1)t n  , the domination polynomials of nBar  and

,n tBar  is 2((1 ) 1)nx  . In this section, we present graphs whose domination polynomials are

=1
((1 ) 1)k ni

i
x  . For this purpose, we construct families of graphs from a path kP  which we denote by

1 2( , ,..., )kS G G G  in the following definition.

Definition 3.1  The graph 1 2( , ,..., )kS G G G  is a graph which obtain from a path kP  with the vertices

1 2{ , , , }kv v v , by substituting a graph iG  of order 3in  , for every vertex iv  of kP , such that

• for = 1,i k , the graphs iG  have at least one vertex of degree 1in   and other iG ’s have at least two

vertices of degree 1in  , and

• in the graph 1 2( , ,..., )kS G G G , the end vertices of each edge ie  in the path graph, kP  are one vertex of

degree 1in   in graphs 1iG   and iG .

 We have the following result for graph 1 2( , ,..., )kS G G G .

Theorem 3.2 For every natural number 2k  ,

Fig. 5. Two graphs in 3[ ]Bar
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1 2 1 2( ( , ,..., ), ) = ( , ) ( , ) ( , ).k kD S G G G x D G x D G x D G x

In particular if =i ni
G K and 3in  , then

1 2
=1 =1

( ( , ,..., ), ) = ( , ) = ((1 ) 1).
k k

ni
n n n nk i

i i
D S K K K x D K x x  

Proof.  Let ie (1 )i k   be the edge joining 1iG   and iG  in 1 2( , ,..., )kS G G G . By Theorem 2.5 two end

vertices of edge ie  are domination-covered in 1 2( , ,..., )k iS G G G e . So, by Theorem 2.6 every edge ie  is an

irrelevant edge of 1 2( , ,..., )kS G G G . Therefore we have the result.

We shall generalize the graphs 1 2( , ,..., )kS G G G  in Definition 3.1 such that this generalized graphs and

1 2( , ,..., )kS G G G  have the same domination polynomial. Suppose that 
1 2

( , ,..., )t n n nk
GS K K K  be a family of

graphs in the form of 
1 2

( , ,..., )n n nk
S K K K  such that the complete graphs ni

K  with 1( ) = { ,..., }n ni i
V K u u

and 1ni
K


 with 11 1

( ) = { ,..., }n ni i
V K v v

 
 are joined with it  following edges

1{ |1 1,1 1},i j i iu v i n j n      

and 
1

1

k

i
i

t t




 . Note that for every 1 1i k   , 1( 1)( 1)i i it n n    , so 
1

1
1

( 1)( 1)
k

i i
i

t n n





   .  Similar to

the proof of the Theorem 2.10, we have the following theorem:

Theorem 3.3 Let 1 2, ,..., kn n n be arbitrary natural numbers and  it  be a natural number such that for

every 1 1i k   , 1( 1)( 1)i i it n n     , 
1

1

k

i
i

t t




 and . All graphs in the family of  
1 2

( , ,..., )t n n nk
GS K K K

have the same domination polynomial. More precisely, the domination polynomial of each  H in

1 2
( , ,..., )t n n nk

GS K K K  is equal to =1
((1 ) 1)k ni

i
x  .

Conclusion. In this paper, we studied the D-equivalence classes of barbell graphs nBar . We showed that,

for each natural number n, n nK K , nBar , ,n tBar  and the complement of the book graph of order 1n  ,

1
c
nB   have the same domination polynomial, i.e., , 1[ ] = [ ] = [ ] = [ ]c

n n t n n nBar Bar B K K  . Example 2.12, im-

plies that except for these kind of graphs, there are other graphs in this class. Therefore, exact characterization
of graphs in [ ]nBar  remains as an open problem. Also we presented many families of graphs which are in

1 2
[ ... ]n n nk
K K K   , but similar to Example 2.12, there are other graphs in this class. So, exact characteri-

zation of graphs in 1 2
[ ... ]n n nk
K K K    remains as another open problem.
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maTematika

zogierTi grafis D-ekvivalentobis klasebis
Sesaxeb

s. jahari da s. alixani

iazdis universiteti, maTematikis departamenti, iazdi, irani

(warmodgenilia akademiis wevris n. berikaSvilis mier)

Tu G aris n-rigis martivi grafi, maSin misi dominaciis polinomi aris

( , ) ( , ) iD G x d G i x , sadac ( , )D G i aris G-s dominaluri simravleebis raodenoba sididiT

i . n-barbel grafi Barn agebulia sruli n-rigis Kn grafis ori aslis 1-ganzomilebiani
wiboTi SeerTebiT. Cven vamtkicebT rom yoveli n 2-Tvis, Barn ar aris D-erTaderTi, e.i.
arsebobs sxva araizomorfuli grafi imave dominaciis polinomiT. ufro zustad, Cven
vaCvenebT, rom yoveli n-Tvis D-ekvivalentobis klasi barbel grafisa [Barn] Seicavs

mraval grafs da, maT Soris, aris n-1 rigis e.w. wignis grafis damateba 1
c
nB 

 . Cven agreTvee

aRvwerT 1 2 ...n n nkK K K   grafis D-ekvivalentobis klasSi grafTa mraval ojaxs.
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