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ABSTRACT. We discuss some aspects of interactions of high-frequency electromagnetic (EM) waves
with quantum Fermi gas, assuming that the intensity of EM waves is sufficiently large. Relativistic
statistical thermodynamics of quantum electron-ion gas at presence electromagnetic waves is considered.
In this case the distribution function of particles becomes anisotropic, due to high power EM waves. By
the new distribution function we study all the thermodynamic quantities as function of densities,
temperatures and the amplitude of EM waves. We investigate the cavitation phenomenon of degenerate
Fermi electron gas. We obtain a novel set of adiabatic equations. For two cases we obtain expressions of
the specific heat, which is strongly dependent from the amplitude of EM waves, namely, the coefficient of
the electron specific heat increases with the increase of the amplitude of EM waves. © 2016 Bull. Georg.
Natl. Acad. Sci.
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In recent years one of the most important problems in plasma physics is the study of nonlinear interac-
tions of intense electromagnetic (EM) waves with plasmas [1-16]. More recently, a great deal of attention was
devoted to the study of the properties of electron-ion and electron-positron-ion quantum Fermi plasmas [17-
31]. Such interest is motivated by its potential application in modern technology, e.g. metallic and semicon-
ductor nanostructures - such as metallic nanoparticles, quantum wall and quantum dots, nanoplasmonic
devices, quantum X-ray  free-electron  lasers, etc.

Moreover, quantum electron-ion or electron-positron-ion plasmas are common in planetary interiors, in
compact astrophysical objects (e.g. the interior of whitedwarf stars, magneto spheres of neutron stars and
etc.), as well as in the next generation intense laser-solid density plasma experiments.

Despite extensive theoretical efforts (for review see [17] references therein) since then there were ques-
tions and issues to be clarified. Answers to some salient questions are given in references [20,31], with a new
type of quantum kinetic equations of the Fermi particles of various species and a general set of fluid equa-
tions. This kinetic equation for the Fermi gas was used to study the propagation of small longitudinal
perturbations, deriving a quantum dispersion equation. Later the dispersion properties of linear oscillations
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of quantum electron-ion [22-23], and electron-positron-ion [25] plasmas, as well as at neutral 3He  [32], where
studied. The effects of the quantization of the orbital motion of electrons and the spin of electrons on the
propagations of longitudinal waves in the Fermi gas are also reported recently [26].

Quite recently an adiabatic magnetization process was proposed in Ref. [27] for cooling the Fermi electron
gas to ultra-low temperatures. New aspects of the plasma of a photon gas in the nonlinear classical electron-
ion plasmas were considered in Ref. [33].

First Law of relativistic thermodynamics, Boltzmann H-theorem for photon gas and adiabatic photon self-
capture was investigated in Ref. [16].

Nonlinear propagation of intense EM waves in a hot electron-positron or electron-positron-ion plasmas
was investigated in [11,12,14,34-36] and has shown that distribution function of particles becomes aniso-
tropic [37-38].

The study of relativistic thermodynamics of a Fermi gas, of sufficiently low temperature and in a
relativistically intense EM wave is of fundamental significance.

In this letter, we shall investigate degenerate Fermi gas in the presence of a strong EM field and calculate
the thermodynamically quantities developing the statistical mechanics in the relativistically intense EM
waves.

Quantum Anisotropic Distribution Function

Let us now consider a system which is a diluted gas composed of electrons, ions and photons (e+i+ or
electrons, positrons, ions and photons (e–+e++i+), and describe this compressible and continuous medium
in terms of its macroscopic properties such entropy, pressure, density, etc. It was shown in Ref.[16,37-38] that
in the case of the relativistically intense (circularly polarized) EM waves propagation into a plasma, the
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Subsequently we will consider only electron degenerate Fermi gas.
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coaxial cylinder. In this case the relativistic kinetic energy reads
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If EM field is absent 0a   a uniform filling of the Fermi sphere by the points depicting the allowed states

corresponds to continuous energy spectrum    x y zE p p p  , where , ,x y zp p p  run through continuous

sets of values from 0 to Fp  (See Fig.1a). Application of the intense EM waves does not change the total

number of electrons, but causes their redistribution and the allowed state in the plane zp const   is one

given orbit (define by 2a , as shown in Fig. 1(b)).
When a three dimensional analogue is considered, this means that in the strong EM field allow state is

condensed on the surface of coaxial cylinder parallel to  zp  axis (See Fig.2).

For a Fermi distribution function with a chemical potential 2 2
0 1m c a    we have at 0T   the situa-

tion shown in Fig. 3. The chemical potential at 0T   is just equal to the energy of the highest occupied state,

i.e. 
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Thermodynamics of Fermi gas

We now introduce the basic definitions in the rest system of given plasma component, namely, the density,

 , 2n r t dp f  
  , (1)

where the factor 2 is on account of the particle spin,

Fig. 1. (a) shows free electrons without  EM field (a=0), (b) free electrons in EM field (a0).



32 Nodar Tsintsadze, Levan Tsintsadze, Ketevan Sigua

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 2, 2016

  2 2exp 1 1

Bf
a u 


   

, (2)
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0n - is the density of electrons at the absent EM field, T is the temperature and in all subsequent formulae will

be measured in energy units. Introduced the following notation:  ||p
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Assuming the Fermi degeneracy temperature  k
F

B

T
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   ( Bk  is the Boltzmann constant) much higher than

Fermi gas temperature, the Fermi distribution function is in a good approximation described by the Heaviside
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At  0T  , the distribution function of electrons f now reads as
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For the density we obtain

Fig. 2. When a three dimensional analogue is considered, this
means that in the strong EM field allow state is con-
densed on the surface of coaxial cylinder parallel to p z
axis.

Fig. 3. Fermi distribution function with a chemical potential

2 2
0 1mc a     at T=0.
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The dynamics of relativistically circularly-polarized EM waves propagation in a relativistically hot elec-
tron-positron plasma has been considered and it is shown, that at a certain amplitude of the EM field, a
cavitation phenomenon takes place [39]. This phenomenon takes place also in the degenerate Fermi electron

gas, which follows from Eq. (6), that the density of electrons becomes zero at 2 2 1a   .

Expression (6) shows that all electrons are ejected across the EM beam direction. This phenomenon can
be called “quantum electron cavitation”.

Two types of relativism were investigated in detail in classical plasmas [4,9, 34,37-38].  One is electrons in
a strong EM field, in which may obtain relativistic velocities. The second one is when the thermal energy of
the plasma electrons is of the order or larger than the energy at rest, it is the other type of relativism. In this
case the thermal velocities of the electrons become of the order of the light speed.

In the case of the Fermi gas (EM field absent) is compressed, the mean energy of the particles increases.

When it became comparable with 2
0m c , relativistic effects begin to be important. In this case the relativistic

gas will be formed. The density of electrons should be 
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 or more.

We now consider the case, when the thermal energy Bk T  is much less than the Fermi energy F . In this

case the distribution function is appreciably different from unity in a narrow range of values of the energy
2 2 2

0 1m c a u     close to limiting Fermi energy  . The width of this transition zone of the Fermi

distribution is of the order of Bk T . Thus, in this case the density of electrons for the non-relativistic limit

 
 

221/22
0 22

11 1
24 1F

Tn n 
 

       
    

, (7)

where 
F

eA
cp

  .  For the relativistic limit

 
 

2 22
2 20

22 2 2

1
1 1

61 1

ann a
a


 

        
    

. (8)

The mean kinetic energy defined in the form
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Again we consider the case, when the thermal energy Bk T  is much less than the chemical potential. Thus,

the mean kinetic energy can be rewritten as
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Non-relativistic limit for the mean kinetic energy we have

   
 

22 2
2

2 22
0

11 1
3 62 1
F B

k
F

eA k T
m c

  
 


        

    
. (11)

We now define the specific heat for the Fermi electron gas for two cases. Relativistic limit (10)
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Non-relativistic case (11) the specific heat and entropy reads as
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whereas  for  the entropy we have the same expression as equation (13), as it was expected.
We know that in all temperature regions a metal consists of two subsystems: a crystalline  Lattice of ions

and a free electron gas. Therefore, the specific heat of a metal can be presented as a sum of two items:
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   is the density of electrons.

Comparison between lat
VC  and e

VC  show us that for the temperature 1T   degree lat
VC  is always more

than e
VC . We show that the specific heat of electrons at 1T   degree or more can be greater than 3~lat

VC T

for the case of 2 1   (see Eq. (13)).

Since the entropy remains constant in an adiabatic process, from equation (14) follows
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This is new adiabatic equation.

In the absence of EM fields 2 0a   the above expression (21) reduces to well-known expression, given in
reference [40].

Note that equation (21) is an adiabatic equation and it should be emphasized that this adiabatic equation
is the function of three variables – the density, the temperature and the amplitude EM waves.

If we suppose that the density of the Fermi gas is constant, then the adiabatic equation reduces to

 2
0 1T T   , (22)

which show that at 1, 0T   . Thus, we have demonstrated the adiabatic cooling the Fermi electron gas
to ultra-low temperatures.

We now derive the perpendicular component of the pressure using the distribution function (5) for
electrons
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After integration of expression (23), we obtain
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Non-relativistic approximation the pressure P  reads as

2 21
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where n is the density of electrons defined by Eq. (7).
Next, for the parallel component of the pressure we obtain
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|| || ||

1
3

fP c p dp

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Use of expression (2) in Eq. (26) yields
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Non-relativistic limit  1     and  2 1a   we obtain

 2 2
||

1 1
9 F

nP P
m
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Note that Expression (24), (27) and (28) become zero when a cavitation phenomenon takes place.

Summary

We have created the relativistic thermodynamics of quantum Fermi electron gas. We have studied the ther-
modynamic properties of a Fermi gas in the presence of a relativistically, as well as non-relativistically intense
EM waves and investigated all the thermodynamic quantities as a function of density, temperature and
radiation. We have shown, that at certain amplitude of the EM field, a cavitation phenomenon takes place in
the degenerate Fermi gas.

The relativistic and non-relativistic expression of the specific heat is explicitly found. We have shown that
EM field sufficiently changes the equation of state. We have obtained a novel set of adiabatic equations. A
novel adiabatic equation implies that at the constant density the increase of the amplitude of EM field

consequently leads to the temperature decrease as  21T    for non-relativistic case. The results of the

present paper may be substantial interest in connection with the applications in modern technology and also
in astrophysical plasmas, e.g. pulsars, white dwarf stars, black holes etc.
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fermi gazis statistikuri Termodinamika
relativistur mZlavr eleqtromagnitur velSi
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** ivane javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti, e. andronokaSvilis  fizikis
instituti, Tbilisi

Seswavlilia fermi gazis relativisturi Termodinamika sakmarisad dabal tempe-
raturaze da relativistur mZlavr eleqtromagnitur velSi. gamokvleulia gadagvarebuli
dakvanturi eleqtron-ionuri fermi gazis Tvisebebi Zlieri eleqtromagnituri velis
arsebobisas. am dros nawilakTa ganawilebis funqcia xdeba anizotropuli da yvela
Termodinamikuri sidide warmoidgineba, rogorc simkvrivis, temperaturis da eleqtro-
magnituri talRebis amplitudis funqcia. gamokvleulia gadagvarebuli eleqtronuli
fermi gazis kavitaciis movlena. miRebulia axali adiabaturi gantolebebi. dadgenilia,
rom siTbotevadobis koeficienti izrdeba eleqtromagnituri talRebis amplitudis
zrdasTan erTad.
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