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ABSTRACT. Eigenvalue problem related to planar electron subject to homogeneous orthogonal magnetic
field is considered on a stripe. It is discussed how the dispersion relation becomes affected by boundary
conditions supplied. Comparison is carried out between Dirichlet and Neumann boundary conditions and
essential differences leading to distinct physical outcomes are pointed out. © 2016 Bull. Georg. Natl.
Acad. Sci.
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Quantum mechanical problem of an electron in
magnetic field is the fundamental building block for
many physical constructions. The problem acquired
further applications after the discovery of such low-
dimensional phenomena as the quantum Hall effect
[1]. Interesting applications emerge in connection
with topological insulators [2], edge states [3,4] and
the developing field of spintronics. The later aims in
generating, manipulating and detecting the spin cur-
rent [5]  representing directional flow of electron spin.
Most of the interest is attracted by the so-called pure
spin currents – the flow of electron spin without flow
of electric charge. Therefore, the physical construc-
tions generating the flow of electrons with vanishing
electric current are of special interest. In the given
paper we present the scheme where electric currents
in many-particle states vanish due to special bound-
ary conditions. Namely, we consider the problem of
electrons on a strip where the eigenvalue problem is

supplied by boundary condition. We show that the
Neumann boundary conditions generate special type
of edge states consisting of two counter-directional
flow of electrons which exactly cancel out each other.
Provided the net electric currents are absent, such
scenario is an appropriate start point for further de-
velopment of spin effects.

Planar Electron in Homogeneous
Orthogonal Magnetic Field

We consider quantum mechanical problem of an elec-
tron in the presence of orthogonal magnetic field.
The corresponding Hamiltonian is given by [6]

2 21 1( ) ( )
2 2x x y yH i eA i eA

m m
      , (1)

where m is an electron mass, and ,x yA  are the vector

potentials describing homogeneous magnetic field

orthogonal to the plane x y y xB A A const     .



54 Merab Eliashvili and George Tsitsishvili

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 2, 2016

Geometry of the problem corresponds to the stripe
of the finite width d and infinitely extended in the y-

direction / 2 / 2d x d    , y    .  The

eigenvalue problem ( , ) ( , )H x y E x y   must be

supplemented by the boundary conditions (BC) im-
posed on the wave function  . Physical interpreta-

tion of the later is that 2( , )x y  measures the den-

sity of probability that electron is found at a point
( , )x y . The chosen BC must confine electron to move

inside of the finite width strip, without leakage away
across the edges. The flow of probability is related to
the density current

* *1 ( ) ( )
2n n n n nJ ieA ieA
im

             ,(2)

which satisfies the continuity equation
2( , ) 0t x x y yx y J J      . (3)

Provided the system is located between
/ 2Lx d   and / 2Rx d   the BC on ( , )x y  must

guarantee the x-component of (2) vanishes at
boundaries

( , ) ( , ) 0x L x RJ x y J x y  (4)

This may be realized in different ways. In what
follows we consider two options

Dirichlet boundary conditions

( , ) ( , ) 0L Rx y x y   , (5)

Neumann boundary conditions
( , ) ( , ) 0x L Rx y x y    (6)

Both alternatives reproduce equation (4) but lead to
different dispersion relations and as a result give dif-
ferent physical outcomes.

Natural choice of gauge for the vector potential

is given by ( , ) (0, )x yA A Bx  known as Landau

gauge. In that case the Hamiltonian (1) is transla-
tional invariant in y-direction and the momentum

yk k  is a good quantum number and the solution

to the eigenvalue problem H E   can be searched
in the factorized form

( , ) ( )iky
kx y e   (7)

where

1x k    (8)

with   being the magnetic length set by ( 0eB   is
assumed)

2

1 eB


. (9)

Then the eigenvalue problem is reduced to

( ) ( ) ( )k kh E k    , where

2 21 1( )
2 2ch      (10)

with 2 1( )c m    the cyclotron frequency..

It is convenient to parameterize the energy by the
variable   as

1( )
2cE    . (11)

Then the general solution to ( ) ( ) ( )k kh E k   

appears as

2 /2 2
1

1 1( ) ( , , )
2 2k e c M      

2
2

1 1 3( , , )
2 2 2

c M    
, (12)

where ( , , )M a b z  is the Kummer function [7], and

1,2c  are the constants to be adjusted so that BC are

satisfied.
Dirichlet boundary conditions imply

( ) ( ) 0k L k R     , where

1

1

1
2
1
2

L

R

d k

d k









  

  

 

 
(13)

Taking into account (12) we rewrite the Dirichlet BC
as

   

2 2
1 2

2 2
1 2

1 1 1 1 3( , , ) ( , , ) 0,
2 2 2 2 2
1 1 1 1 3( , , ) ( , , ) 0.
2 2 2 2 2

L L

R R

c M c M

c M c M

   

   

   

    (14)

Nontrivial solution for 1c  and 2c  exists only if the

corresponding determinant vanishes. Employing the
Kummer transformation M(a,b,z)=ezM(b–a,b,–z) this
condition appears as
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( ) ( )D L D Rf f  (15)

where

2

2

1 1 1( , , )
2 2 2( )

1 3(1 , , )
2 2

D

M
f

M

 


  

 


 
. (16)

For a given value of the momentum k, the equation
(15) generates infinite number of solutions for the
parameter  . Hence, one obtains an infinite amount

of functions ( )k , and the corresponding energies

1( ) ( )
2cE k k     

. Fig. 1a shows the lowest three

bands 0,1,2 ( )E k  obtained by numeric calculations.

Neumann BC imply '( ) '( ) 0L R      and lead

to
( ) ( )N L N Rf f  , (17)

where

2 2

2 2 2 2

1 1 1 1 1 3( ) ( , , ) 2 ( , , )
2 2 2 2 2 2

1 3 2 1 5(1 ) (1 , , ) (1 ) (1 , , ) .
2 2 3 2 2

Nf M M

M M

      

      

        
         

(18)

Fig. 1b demonstrates the corresponding disper-
sion law.

Remark that the employed BC both produce the

similar flat segments in ( )E k  having origin in the

Landau level structure. Differences occur in the re-
gions of non-zero dispersion / 0dE dk  .

Certain comments are in order here. Increasing
the width of the strip ( d  ), the flat segments

become wider, while the depth and the width of wells
remain unaffected. In order to verify this observa-

tion, consider the right well ( 0)k   in the case of

Neumann BC. Introduce the quantity

21 /
2

k d    , which measures the deviation of k

from the value of 21 /
2

d  . Then the Neumann BC

(17) appears as

( ) ( / )N Nf f d    (19)

In the vicinity of 21 /
2

k d   with / 1d  , the

value of   is regarded finite. Then the right hand
side of (19) can be replaced by the value correspond-
ing to d   and we come to

2 2

2 2 2 2

1 1 1 1 1 3( , , ) 2 ( , , )
2 2 2 2 2 2

1 3 2 1 5(1 ) (1 , , ) (1 ) (1 , , )
2 2 3 2 2

M M

M M

     

      

       
          

1 1( )
2 2

1 1( )
2 2





 
 

 
. (20)

This relation generates infinite number of solutions
for ( )   which for finite   are independent of d.

Note, that when the value of k belongs to the

area where / 0dE dk   the quanity 2( )k    is finite

only for L R    , i.e. represents the bulk state.

At the same time, 2( )k   with 21~ /
2

k d   are

Fig. 1. Dispersion relations E(k) for Dirichlet (left) and Neumann (right) boundary conditions.



56 Merab Eliashvili and George Tsitsishvili

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 2, 2016

localized at ,~ L R   thus representing the edge

states.

Matter Current

Due to the translational invariance the eigenfunctions
take the form (7) and the eigenvalue problem becomes
one-dimensional set up on the segment L R    .

As a result, the scalar product of two wave functions
is defined as

*( ) ( )R

L
d




        . (21)

Within the class of wave functions set by Dirichlet
or Neumann BC the Hamiltonian (10) is hermitian with
respect to the scalar product (21). Provided ( )k    is

the normalized wave function, we have

( ) k kE k H   where from we obtain

*R

L
k k

dE dH d
dk dk




   

*
*R R

L L

k k
k k

d d
H d H d

dk dk
 

 

 
     . (22)

Due to H H     and ( )k kH E k 

the last two terms cancel out each other. Comparing
the resulted relation to yJ  set by (2) we obtain

( ) R

L

x

y yx

dEJ k J dx
dk

  , (23)

where the left hand side is the matter current in y-
direction carried by the quantum state with momen-
tum k.

As a matter of the relation (23), any quantum state
with momentum from the flat segment carries no cur-
rent due to '( ) 0E k  . The current carrying states

are those with '( ) 0E k  ,  i .e. the ones with

21~ /
2

k d  . However, certain difference occurs

between the cases of Dirichlet and Neumann BC. In

the first case the momenta with 21~ /
2

k d   are

localized at the right edge ( ~ )Rx x   and carry posi-

tive current due to '( ) 0E k  , while those with

21~ /
2

k d   are localized at the left edge ( ~ )Lx x

and carry negative current due to '( ) 0E k  . Thus,

the Dirichlet BC generate current carrying edge
states.

Consider now the states in the right well in the
case of Neumann BC (same is true for the left well).
These states are all localized at the right edge

( ~ )Rx x  and correspond to 21~ /
2

k d  . Assume

the system is filled by electrons up to the Fermi level

FE  as shown in Fi. 2.Then the occupied one-particle

states are those with 1 2k k k  . The total current

carried by this many-particle state can be calculated
by integrating over the occupied one-particle states.
Taking into account the relation (23) together with

1 2( ) ( )FE E k E k   we find

2

1
( ) ( )

ktot
y yk

J k J k dk 
2

1
1 2( ) ( ) 0

k

k

dE dk E k E k
dk

   (24)

i.e. the total current is precisely zero. The same is true
for the left edge ( ~ )Lx x .

Summarizing, in the many-particle quantum state
shown in Fig. 2 all electrons are localized at bounda-
ries and the total electric current flowing along the
boundary vanishes precisely. Roughly speaking, each
boundary comprises two opposite flows of electrons,
which cancel out each other thus producing vanish-

Fig. 2. Inset of the well in the case of Neumann boundary
conditions. The system is filled with electrons up to
the Fermi level thus occupying one-particle states with
k1kk2.
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ing edge currents. The precise vanishing of electric
current is a good start point for developing the spin
effects. In particular, assume the electrons are sup-
plied with the spin degree of freedom subject to spin-
orbit interaction, which supports the spin to point
up, if electron moves in certain direction, and to point
down if it moves in opposite direction. In that case
the electrons traveling in positive direction will carry
the spin-up, while the ones traveling in negative di-

rection will carry the spin-down, what results in spin
transport with no charge transport. This is what is
usually referred to as pure spin current. Such sce-
nario of generating pure spin currents will be investi-
gated in a separate article.
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fizika

eleqtroni magnitur velSi SezRuduli
geometriis pirobebSi

m. eliaSvili* da g. ciciSvili**

* ivane javaxiSvilis Tbilisis saxelmwifo universiteti, fizikis departamenti, zust da
sabunebismetyvelo mecnierebaTa fakulteti, Tbilisi
** ivane javaxiSvilis Tbilisis saxelmwifo universiteti, Teoriuli fizikis ganyofileba, andria
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(warmodgenilia akademiis wevris g. jafariZis mier)

ganxilulia erTgvarovan magnitur velSi  moZravi eleqtronis kvantur-meqanikuri
amocana  zolovani geometriiT. Seswavlilia dispersiuli Tanafardobis damokidebuleba
sasazRvro pirobebze. dispersiuli Tanafardobebi gamoTvlilia dirixlesa da neimanis
sasazRvro amocanebisaTvis da naCvenebia, rom es Tanafardobebi mniSvnelovnad gansxvavdeba
erTmaneTisagan. kerZod, neimanis sasazRvro amocanis SemTxvevaSi dispersiul Tanafardobas
gaaCnia potencialuri ormos tipis segmentebi, rac ganapirobebs mravalnawilakovan
mdgomareobebSi eleqtruli denis ganulebas da amis Sedegad qmnis wminda spinuri efeqtebis
Camoyalibebis SesaZleblobas.
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