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Let x(i):(xf),...,xg)), i=1...,p, beindependent samples with sizes M,Ny,...,N,, from p>2

general population with probability densities f;(X)...., f,(X) and it is required to test two hypotheses
based on samples x ) , i=1...,p: test of homogeneity
Ho: fi(x)=--=f,(x) o)
and goodness-of-fit test
Ho: fi(x)=-=f,(x)=fo(x), )
where f,(x) isafully defined density function. In case of hypothesis H, common density function f, (X)
is unknown.

In this paper the test is constructed for checking hypothesis H, and Hy against a sequence of “close”
aternatives[1, 2]:

e 400 ol 25| (el aim) o)

J.J' ((x)dx=0, g =min(nl,...,np)—>oo_
We consider criteriafor testing Hy and Hg, based on statistics
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j=1

2
p 1
T(nl,nz,...,np):ZNij [ﬁ,(x)—ﬁz N; ﬁ (x)} r(x)dx, ©)
= j
where £(x) isRosenblatt-Parsen kernel estimator of the distribution density f; ():

ﬁ(x):%gK(ai(x—Xgi))), Ni=%, N =N, +-+ Ny,

Particular case p =2 wasdiscussed in papers[3, 4]. Inthis case statistics T becomes more visual:

T(n,n)= NN, I(fl(x)—fz(x))zr(x)dx.

N; + N,
In this paper the found limiting distribution of statistics (3) was found for hypothesis H, in case, where
n unlimited isincreasing sothat n = nk; , where n — oo, and k; areconstant. Let & =@, =---=a, =a,,

so a, »>o forn—>ow.
For getting limiting distribution of functional T, =T (nl np) let us introduce conditions for func-

tions K(x), fo(x),j;(x),i=1...,pand r(x):
() K(x)=0 - function with bounded variation,
IK(X) dx=1 X°K(x)e Ly (-90,0);

(ii) density function f,(X) is bounded and positive on (—ec,%) or is bounded and positive on some
finite interval [c, d] . Besides, it has bounded derivative in the field where it is positive;

(iii) functions ] j(X), i=1...,p,arebounded and have bounded first order derivatives, also j (X) and
j i(l) € Ly (—o0,0).

(iv)weighed function r (x) ispiece-continuous, bounded and integrable, besides r (£, ) #0, k=1,..., p,
where ¢, issome fixed points of continity of r(X).

Thefollowingistrue:

Theorem 1. Leusfulfill the conditions (i)—(iv), also f; (x) =0, x e (—o0,). If

na¥%a2g, —cy #0, a0, = ©, andn 20(”7]/2) (an =a(ny), gy Zg(no)) :
na,” — o and a?a ,g,, — o, thenrandomvariable aﬂfz (T, —m) under hypothesis H, hasnormal limit
distribution (A(j ),s *), where
. S k? 2
AG)=Coy | k= |r(e) fif (x)
i=1
s?=2(p-1) [ 17 (Wr(x) &XR(Ky), Ko=K=K,

m=(p-1)[ f (})r(x) &xR(K), R(g)=[g?(x)dx
k=k+-+k, pz2
Conditionsof Theorem1about a,, a, and g, arefulfilled, for example, if: &, = n®, a,=n?,9,= n®
d 1 1
at E=1—2a -b,a+b >E’ 0<d <§, 0<b <d, and conditionsabout a , b and d arefulfilled, for

example, if
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d:l b:l, a:g d E, b:l a:l_s;
4 5 80 9 6 36
1 1 1
d=2, b==, a=—
5 6 30 &°

From Theorem 1 wewill statetwo Corollaries:
Corollaryl. Let the conditions (i), (i) and (iv) be fulfilled under K(x), fo(x) u r(x).If na;? -0,
then random variable a}{? (T, —m) under hypothesis H; has a normal limit distribution (O,S 2).

By Corollaryl atest for checking hypothesis Hg can be constructed; critical region for  checking
hypothesis can be defined by inequality

T,2>d, (a ) @
where
dy(@)=m+a¥%sl,,
|, isthequantileof level 1-a (O<a <1) of the standard normal distribution ®(x).
Corollary 2. Under conditionsof Theorem 1 local behavior of the power Ry (Tn >d, (a )) isasfollows

Ry, (T, zdn(a))—>1—cb(l a —yj,

when n— .
Let introduce

The Theoremistrue.
Theorem 2. Let all the conditions of Theorem 1 be fulfilled. Then

a%/Z(Tn—”?w)S r;l
under hypothesis H, has anormal limit distribution (A(j )s _1,1) , where
m =(p-1)R(K)M,, s7=2(p-1)R(K,)AZ.
Proof. It isobvious
ay? (T, —my)s b =a?(T,-m)s ‘1(ssgl)+afq/2(m—m1)s =
Asit is enough to show

¥ (M, [ fo (x)r (x) o) =0, (1) ©)

and
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j £2(x)r?(x) dx =0, (1). ©)

But (6) followsfrom Theorem 2.1 Bhattacharyya G. K., RoussasG. G. [5] (seedso[6], [2]).
Let us proove (5). We have

x) dx- [ fo (¥)r )dx‘
<al’E j(f;(x)_Ef,:(x))r(x) dx‘+aﬂ]/2HEf:(x)— fo ()| (x) dx=
=An+ Aoy

It isnot difficult to show

Ef (x) = fo(x)m&}anj}qt)j i[ng —antgn]dt,

O( - ) uniformlyinx e (—o,»).So

X—10;

Ef (%)= fo(x)+o&]+an%jzikjjr<(t)j j [ — aﬂ;n J dt

itfollows,

Agy < Ga,"? +cyal%a gy -
Next, we have

An <8 ([ (%)t (9)r () &) <

sl T

a |’
ar¥? +\Ja,a,0, +(?) J—)O

It follows,

Ant+Ansc

a,
as \Ja,a,0, <a%a,g, — 0 and F—>0.

From Theorem 2 we will statetwo corollaries.
Corollary 3. Randomvariable

a1]:|/2 (Tn - mw)s r;l
under hypothesis H, hasanormal limit distribution (0,1).
This result can be used for constructing an asymptotic test for checking hypothesis
Ho: fi(x)=---=f,(X) (test of homogeneity); critical region can be defined by inequality:
Tozd,(a)=m+a %l ™
where |, isthequantileof level 1-a of the standard normal distribution ®(x) .
Corollary 3. Under conditions of Theorem2 local behavior of the power F’H1 (Tn = d~n (a )) as follows
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Ry (Th=dn(@)) >1-0(1, A )s ),
when n— oo .
Remark 1. Under hypothesis H; we have

4

F (%) = Fo (X)+a,0,Y,; [’;

n

j, Ui(u)zjij (x) dx

and accordingto Theorem1 a g, = o(ij . So it can bewritten

wjpTFi(x)Fo(x)Io(%) ®

It is well-known that the test based on deviation between empirical distribution functions, for example,
criterion Kolmogorov-Smirnov and test Cramer-Mises-Smirnov (analogues to these criteriafor p =2 was

constructed by Kiefer, J[7]) differslocal closealternativesfromnull hypothesis, if F (x)-F,(X) = O(ij

n

uniformly in Xe (—oo,oo) , in case of (8) the above mentioned test cannot asymptotically distinguish such
hypotheses from null hypothesis (limiting power will be equal with level of the test). However, tests (4) and
(7) based on estimators of distribution density are more powerful asymptotically (under hypothesisH, ) than
tests based on empirical distribution functions (analogues questions for one sample considered in paper of
Rosenblatt [1]).

Remark 2. Tests (4) and (7) for checking hypotheses Hj and H,, against aternatives H, are asymp-
totically strictly unbiased as A(j ) >0 andequal to 0 if andonlyif j ; (X) =0, dmost everywhere, i =1,..., p.
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