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ABSTRACT. In the paper a multi-component redundant system with unreliable, repairable units is
considered. Two types of maintenance operations are performed in the system: 1) the replacement of the
failed active unit by the redundant one; 2) the repair of the failed unit. The open exponential queuing
model for the system’s dependability and performance analysis is constructed in the form of infinite
system of ordinary linear differential equations. In steady state it is reduced to the infinite system of
linear algebraic equations. At present the system is still being investigated. © 2016 Bull. Georg. Natl.
Acad. Sci.
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In modern reliability theory the performance (effectiveness) analysis of the complex systems with unreli-
able, repairable components is one of the most topical directions in the field [1,2].This is exactly the system
level of investigation, unlike the component (equipment) level of classical reliability theory.

Performance analysis is related to systems, for which one is not able to formulate the “all or nothing”
serviceable or non-serviceable type of failure criterion. Effectiveness characterizes the system ability to
perform its main functions even with partial capacity. Failures of some or even majority of the system compo-
nents lead only to a gradual degradation of the system ability to perform its functions (operations). Actually
one deals with such indices like “partial availability”, “partial system down time”. These types of notions are
used to describe multi-component systems, e.g., global terrestrial systems, computer, telecommunication and
transportation networks, gas and oil distribution systems, power systems, defense systems, etc. or the so-
called systems with embedded “functional redundancy”, where the optional ways to perform system tasks
exist [1,2].

While studying the mentioned systems, traditional mathematical models of classical renewal theory,
reliability theory and queuing theory in many cases proved to be unsuitable, and an urgent necessity for the

construction and investigation of completely new types of models for them arose [1-9].
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In classical reliability theory and practice the equipment reliability provision was the main direction. That
is why in its framework the replacement problem for single-unit systems was studied so thoroughly. Also the
repairman problem has been studied thoroughly mainly for such complex systems, which are reducible to
simple two state failure criterion: serviceable and non-serviceable (The same is “all or nothing” with Ushakov,
“on” or “off” with Barlow, "active” or “inactive”, “good” or “bad” with Epstein, “up” or “down” with
Gertsbach [1,2, 12-16].

In the models related to the replacement problem of single-unit systems the time required to make a
replacement mainly was considered to be zero. Even in the cases, where replacement time was non-negligible,
the replacement problem of a single-unit system was described by alternating renewal process, which caused
no difficulties [12-16].

While analyzing complex systems the replacement time was not taken into consideration [14].

As a matter of fact, in traditional cases of redundancy, active and redundant units (as a rule) were
territorially concentrated at the same place and the replacement of the failed active unit with a redundant one
meant the latter switched over, which was often automatically performed and its duration was negligibly
small.

In modern networks of the above type, however, redundant units are not directly attached (linked) to
active ones. They are placed at specific storages and may be located at the distance of tens, hundreds and
sometimes thousands of kilometers away from the active units. Therefore, the delivery time of the redundant
unit to the place of the failed active one is quite essential.

Atthe same time, in practical cases due to various reasons before the start of the delivery operation of the
redundant unit some time passes, which is often many times greater, than the delivery time itself. In addition,
the replacement operation, apart from the delivery of the redundant unit to the active unit place, includes
other sub-operations, whose execution is necessary in order the redundant unit to continue the active unit
functions. Under such circumstances the mean replacement time is not insignificant and often reaches 20-
40% of the mean repair time. Moreover, the replacement operation, as a rule, is performed not by a repair
facility, but by special replacement channel. Therefore, the replacement of the failed active unit by the

redundant one quite naturally becomes an independent maintenance operation [3-9].

Subject of the Study and its Initial Mathematical Description.

The investigation subject of this paper is a multi-component redundant system with unreliable, repairable
units. The system consists of identical active and redundant units, their numbers are m and n, respectively.
The redundant units are designated for permanent replacement of the main components in case of their
failure. It is supposed that for the normal operation of the system, the serviceability of all active units is
desired. However, if their number is less, then the system continues to function, but with lower economic
effectiveness.

The total failure rate of all active units is +. The redundant ones do not subject to failures. A failed active
unit is replaced by a serviceable redundant one, if there is an available unit in the system. In the opposite case
the replacement will be performed after the availability of the redundant unit. The failed units are repaired,
become identical with the new ones and pass to the group of redundant units. The system has one replace-
ment facility and one repair facility. The replacement time and repair time are random variables with distribu-
tion functions F and G, respectively. When maintenance facilities are busy, requests for replacement or
repairs are queued. Service discipline is FCFS (first come, first served). As we see, in a natural way we have

Bull. Georg. Natl. Acad. Sci., vol. 10, no. 3, 2016



Open Queuing System for Two Parallel Maintenance Operations ... 71

a queuing system with two types of maintenance operations: replacement and repair. We consider here the
case, where m is a large number (in practice it might be tens, hundreds, thousands and more), and we suppose
that we have an infinite source of requests and get an open queuing system for two parallel maintenance
operations: replacements and repairs.

The request for the replacement arises due to the failure of the active unit. The same event generates the
request for repair. Thus, the necessity of two parallel service operations arise.

To this day, neither in the reliability theory, nor in the queuing theory the above problems were investi-
gated. At the same time modern research methods of Markov and semi-Markov processes make it possible to
construct and analyze such models in the framework of the mathematical theory of reliability and queuing
theory[10, 11].

During the last 10-12 years experts of the Georgian Technical University (GTU) achieved notable success
in this direction [3-9].

Namely, the queuing systems of the above type, where in the arriving stream of homogenous events the
demands for two parallel service operations arose, were first introduced by GTU experts and have not been

considered by the other authors yet.

The Mathematical Model.

In this section we construct and investigate the mathematical model for the case m=oo where # is arbitrary. The
replacement and repair times have exponential distribution functions with parameters A and g, respectively.

To describe the considered system we introduce the random processes, which determine the states of the
system at the time ¢;

i(f) — the number of units missed in the group of active units;

() — the number of non-serviceable (failed) units in the system.

Denote:

P(i,jt)=P{i(t)=ij(t)=j}, i=Lm; j=0n+i
Proceeding in the usual way, we can set up the basic difference equations, which relate the probability of
being in a certain state at time to the probabilities of being in variousstates at time 7+ Af. From these

difference equations we obtain the infinite systems of ordinary linear differential equations.

For n> 0 we have

dP(_g;Oa’) = —aP(0,0,6)+ AP(1,0,¢)+ 1P(0,1,1)

%:_a(a+/1)P(i,0,t)+/1P(i+1,o,t)+uP(o,l,r), 0<i<om,

dP(g,tj,t) =—a(a+p)P(0,/,t)+AP(1, j,t)+uP(0,j+11), 0<,j<n,

dP((c)l,tn,t) = —(a+u)P(0,n,6)+ BP(0,n—1,6)+ AP(1,n,1),

W=—a(a+H)P(i,n+i,t)+O!P(i—L”+i_1’t)+lp(i+l’n+i’t)’ O<i<e (D

dp(:;tf,t) =—a(a+A+pu)P(i,jt)+aP(i-1j-Lt)+ AP(i+1,j,t)+uP(i,j+11),
0<i<m,0<i<j+l.
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For n=0 we have:

P(i,j,t)=0, if i< j,or i<0, or j<O0.

%=—aF(0,0,1)+AP(LO,1),
@=—(a+/I)P(i,0,t)+AP(i+1,0,t)+yP(i,1,t), 0<i<oo,
dp(;;i,f):_(a+y)P(i,i,r)+aP(i—1,i—1,r)+/1P(i+1,i,z), 0<i<o,
@: —(ag +A+pu)P(i, jt)+agP(i=1,j=1t)+ AP(i+1, j,t)+ uP (i, j +1,1),

0<i<+00, j<i<+40,

)

It can be proved that for these systems the limit of P(i, j,t) ,as t =—> oo exists forall i, j, if a <A and

a<u.

Denote P(i, /)= lim P(i, ,t). Letting  =— o0 in (1) and (2) we obtain an infinite system of linear

—>w
algebraic equations with respect to P(i, j ) .

For n > 0 (together with normalizing condition) we have:

aP(0,0) = AP(1,0)+ uP(0,1),

(a0 +p)P(i,0)= AP(i+1,0)+ uP(i,1), 0<i<oo,

(a+p)P(0, /)= AP(1, )+ pP(0,j+1), 0<j<n,

(a+u)P(0,n)=BP(0,n—1)+AP(1,n),

(a+p)P(i,n+i)=aP(i-Ln+i-1)+ AP(i+1,n+1), 0<i<oo,

(a+A+p)P(i,j)=aP(i—1,j=1)+AP(i+1, j)+ uP(, j+1),
0<i<oo,0< j<n+i,

© n+i
ZZP(i,j)=1;0<i<oo,0<j<n+i.
i=0 j=i

For n =0 we have (together with normalizing condition):

aP(0,0)=AP(1,0),

(a+2)P(i,0)= AP(i+1,0)+ uP(i,1), 0<i<oo,
(a+u)P(i,i)=aP(i-1i-1)+AP(i+1i), 0<i<oo,
(a+A+pu)P(i,j)=aP(i-1,j-1)+AP(i+1, j)+ uPG,j+1), 0<j<i<o,
P(i,j)=0, ifi< j, ori<0, or j<O0,

o i

2. 2P j)=1.

i=0 j=0
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After finding the probabilities P(i, j ), it is easy to calculate all the steady-state dependability and

performance measures for the considered system.
The results of the investigation of the systems (3) and (4) will be published in the nearest future.

Conclusions.

The present paper is the first in scientific publications to discuss an open queuing system for two parallel
service operations.

In general, while constructing and investigating the mathematical model of the discussed system the main
difficulties, as always, are caused by types of functions F and G.

When one of the functions F and G is arbitrary, and the second one is exponential, it is quite possible to
construct the semi-Markov model, the investigation of which, certainly, will be a complex problem, but we
suppose it will be more or less surmountable.

When these functions are both arbitrary, it is possible to construct a model of Markov renewal type. The
problem of its investigation is still unclear.

In our case both of them are exponential. This case is the simplest one and we have obtained the classical
Markov model.

Note that the study and solution of infinite system of equations, as a rule, is a very complex problem, often
unsurmountable. But the matrices of our systems (3) and (4) are highly sparse and this gives us a chance to
advance in their investigation.

Namely, the problem of existence and uniqueness of the solution was investigated. Also, the numerical
algorithms were developed, making it possible to find the approximate solution by means of finite arithmetical

operations. Finally, the error of the approximate solution was estimated.
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