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ABSTRACT. We have discussed all the possible solutions of the field equations for the static
cylindrically symmetric metric in Lyra geometry in the presence of viscous fluid coupled with a massless
scalar field. © 2016 Bull. Georg. Natl. Acad. Sci.
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1. Introduction

Einstein provided a general theory of gravitation by geometry and his theory has been very successful in
describing the gravitational phenomena. Einstein field equations without the cosmological constant admit-
ted only nonstatic solutions and he introduced the cosmological constant in order to obtain the static
models. The properties of the spacetime require the Riemannian geometry for their description. Several
modifications of Riemannian geometry are suggested to unify gravitation, electromagnetism and other ef-
fects in universe. One of the modified theories was introduced by Lyra [1]. He introduced an additional gauge
function into structureless manifold as a result of which a displacement vector field arises naturally from the
geometry. The Einstein field equations in normal gauge based on Lyra were manifold defined by Sen [2] and
Sen and Dunn [3] as

1 3 3 ,
2 2 4

R g R g T
             (1)

where   is the Lyra displacement vector field and other symbols have their usual meaning as in Riemannian

geometry. We choose the geometric units in which 8 1G c   . In Lyra formalism, the constant displace-
ment vector field plays the same role as the cosmological constant in the standard general relativity, [4]. Also,
the scalar-tensor treatment based on Lyra manifold predicts some effects, within the observational limit, as in
Einstein theory [4].
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2. The Metric and Field Equations

We assume that the metric of the spacetime, in which the cosmic fluid resides, is of the static cylindrically
symmetric form with the following line element, [5]:

2 2 2 2 2 21( ) ,ds dt d d dz   


    (2)

where   is unknown function of    only. Also, we consider a cosmic fluid endowed with a bulk viscosity 
and a shear viscosity . The energy-momentum tensor due to this viscous fluid together with a massless
scalar field is given by

,
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2mT u u p h g 

                   (3)

here m , p and u  are, respectively, the matter density, isotropic pressure and 4-velocity vector of the matter

distribution such that (1,0,0,0).u   The comma denotes partial derivatives with respect to the appropriate

coordinates. Also, h g u u      is the projection tensor, ;u 
     is the scalar expansion, the

semicolon denotes the covariant differentiation, ; ;
1 ( )
2

u h u h 
          is the expansion tensor,,

1
3

h       is the shear tensor and   is the massless scalar field such that satisfies the Klein-

Gordon equation as
0,  (4)

where , ,
1 [ ]g g

g


    


  while det( )g g . By considering ( , )t   , the equation (4) is

changed to the following relation

1 0,


      (5)

where the over head dot and prime indicate partial differentiation with respect to t and   respectively. Too
continue our analysis, we consider the Lyra displacement vector to be a time-like vector as

( ,0,0,0),  (6)

where   is either a constant or a function. Before proceeding, with a simple calculation we find that 0  .

Hence, we cannot determine the bulk viscosity for this model. In the next step, the field equations (1) for the
spacetime metric (2) lead to the following equations

2
2 2 23( ) ( ) 2 2 (1 ) 0,

2 2m
ap           (7)

2
2 2 23( ) ( ) 2 0,

2 2
ap        (8)
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ap        (9)
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
          (10)

2 (2 1) 0,a      (11)

where a 



  and the quantities p, m  and   depend on   only. By comparing the equations (9) and (10),

we get

1 0.a a


   (12)

By solving this equation, we conclude

0 ,n   (13)

where n and 0  are constants. From the equations (8) and (9) we find that

ln ( ),
2

n t     (14)

such that   is an arbitrary function. This function can be obtained from the equation (5) as
,ct b   (15)

where b and c are constants. Therefore, we have

ln .
2

n ct b     (16)

Next, with the help of the equations (11) and (16), we deduce

2 .
1 2
c


 


(17)

The shear viscosity has singularity at 1
2

  . Also, using the equations (7) and (8), become

,p 


 (18)

1(2 ) ,m 


  (19)

where 
2

23
4 2

c
   . From the reality conditions, i.e. 0p   and 0m  , we conclude

1 .
2

  (20)

This means that 0   which is equivalent to

2| | | | .
3

c  (21)

Consequently, by using the condition (20), we lead to

| | 2 .
2 1

c





(22)
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3. Physical Models

We assume that the fluid obeys an equation of state of the following form

( 1) ; 1 2,mp       (23)

where   is a constant. Below we will discuss the physical models corresponding to 
41, , 2 :
3

 

Case 1. Dust distribution model (  =1)

From equation (18), we have 0p    and so 0m  . Hence, we can see that this case is not possible for

metric (2).

Case 2. Radiating model (
4
3

  )

The physical quantities in this case take the following forms

1 2 2, | |,
3 2 3mp c
    (24)

here 2  . We observe that the metric (2) becomes a flat spacetime.

Case 3. Zel’dovich fluid model (  =2)
In this case, we find that

, 2 | |,mp c     (25)

where 1  . Consequently, the spacetime must be a flat spacetime.
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fizika

statikuri cilindrulad simetriuli metrikis
zusti amonaxsnebi liras geometriis safuZvelze
blanti siTxisaTvis umaso skalarul velTan
erTad

m. iavari

azadis islamuri universiteti, kaSanis ganyofileba, kaSani, irani

(warmodgenilia akademiis wevris a. xelaSvilis mier)

statiaSi ganxilulia velis gantolebaTa yvela SesaZlo amonaxsni statikuri
cilindrulad simetriuli metrikisaTvis liras geometriaSi, blanti siTxis umaso
skalarul velTan SeerTebis pirobebSi.

REFERENCES:

1. Lyra G. (1951) Math. Z. 54, 52.
2. Sen D. K. (1957) Z. Phys. 149, 311.
3. Sen D. K. and Dunn K. A. (1971) J. Math. Phys. 12, 578.
4. Halford W. D. (1970) Austr. J. Phys. 23, 863.
5. Stephani H., Kramer D., MacCallum M. A. H., Hoenselaers C. and Herlt E. (2003) Exact Solutions of

Einstein’s Field Equations, Cambridge University Press, Cambridge.

Received  February, 2016


	00_Sarchevi 16_3..pdf
	01_Papukashvil.pdf
	02_Purtukhia.pdf
	03_Babilua.pmd.pdf
	04_Assari.pmd.pdf
	05_Japaridze.p.pdf
	07_Gelashvili.pdf
	Page 1

