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ABSTRACT. The homology semimodules ( )nH S  of a presimplicial semimodule S are studied in the

case where S is a simplicial abelian monoid. In particular, it is shown that if a simplicial abelian monoid
A satisfies the Kan condition and the monoid of path components of A is a group, then the homology

monoids ( )nH A  are isomorphic to the  homotopy groups ( ).n A © 2017 Bull. Georg. Natl. Acad. Sci.
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In [1] a version of homological algebra for semimodules and its applications are given (for further devel-

opments and applications see [2-4]). In the present paper, the homology semimodules ( )nH S  of a presimplicial

semimodule S, introduced in [1], are studied in the case where S is a simplicial abelian monoid.

Let us begin with the following two definitions and theorem, the semimodule versions of which are given

in  [1].

Definition 1. We say that a sequence of abelian monoids and monoid homomorphisms
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1 1: , ,

n n

n n
n n nX X X X n

 


 


 

 
 

       

written { , , }n n nX X      for short, is a chain complex if

1 1 1 1n n n n n n n n
       

             

for each integer n. For every chain complex X, we define the monoid

( ) | ( ) ( ) ,{ }n n n nZ X x X x x     

the n-cycles, and the n-th homology monoid

( ) ( ) / ( ),n n nH X Z X X

where ( )n X  is a congruence on ( )nZ X  defined as follows:

1 1 1 1( ) ( ) ( ) ( ) ( )n n n n nx X y x u v y v u    
           1for some , in .nu v X 

The homomorphisms ,n n
    are called differentials of the chain complex X.
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Definition 2. Let { , , }n n nX X      and { , , }n n nX X       be chain complexes of abelian monoids. WeWe

say that a sequence { }nf f  of monoid homomorphisms :n n nf X X  is a  - morphism from X to X   if

1 1and for all .n n n n n n n nf f f f n   
      

If { }:nf f X X    is a  -morphism of chain complexes, then ( ( )) ( )n n nf Z X Z X  , and the map

( ) : ( ) ( ), ( )( ( )) ( ( )),n n n n nH f H X H X H f cl x cl f x 

is a homomorphism of monoids. Thus, nH  is a covariant additive functor from the category of chain com-

plexes and their  -morphisms to the category of abelian monoids.

Recall that a presimplicial abelian monoid A is a sequence of abelian monoids 0 1 2, , ,A A A   together with

monoid homomorphisms, called face operators,

1: , 1, 0 ,i
n n nA A n i n    

such that

1
11 if 0 1.ji j i

n n nn i j n
        

Suppose { , }i
n nA A   and { , }i

n nB B   are presimplicial abelian monoids. A morphism (or a presimplicial

map) :f A B  is a collection of monoid homomorphisms :n n nf A B  satisfying 1
i i

n n n nf f    for all i

and for all n.

If A is a presimplicial abelian monoid, then

2 1

2 1
1 2 1 0: 0,

n

n
n nA A A A A A

  

  

  


  

           

where

0 2 1 3, ,n n n n n n
             

is a nonnegative chain complex of abelian monoids. Using the greatest integer function, one can write

1
[ ] [ ]

2 2
2 2 1

0 0

, .

n n

k k
n n n n

k k



  

 

      
We define the n-th homology monoid of the presimplicial abelian monoid A by

( ) ( ).n nH A H A

Clearly, if { }nf f  is a morphism from a presimplicial abelian monoid { , }i
n nA A   to a presimplicial

abelian monoid { , }i
n nB B  , then 1n n n nf f  

   and 1n n n nf f  
  for all 1n  , that is,  f can be regarded

as a  -morphism from A  to B . Consequently,, ( )nH A  is a covariant additive functor from the category of

presimplicial abelian monoids and their morphisms to the category of abelian monoids.

Let { }nf f  and { }ng g  be morphisms from a presimplicial abelian monoid { , }i
n nA A   to a

presimplicial abelian monoid { , }i
n nB B  . One says that  f  is presimplicially homotopic to g if there is a

family h of monoid homomorphisms 1:i
n n nh A B  , 0 i n  , 0,1,n   , such that

0 0 1
1 1, ,n n

n n n n n nh f h g  
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1
1 1 if ,ji j i

n n nnh h i j 
   

1 11
1 1 if 0 ,j jj j

n nn nh h j n  
   

1
1 1 if 1.ji j i

n n nnh h i j 
    

Theorem 3. Suppose that :f A B  and :g A B  are morphisms of presimplicial abelian monoids.

If  f  is presimplicially homotopic to g, then

( ) ( ) : ( ) ( )n n n nH f H g H A H B 

for all  n.

For any presimplicial abelian monoid A, we define the normalized chain complex associated to A as

follows:

2 1

2 1
1 2 1 0( ) : ( ) ( ) ( ) ( ) ( ) 0,

n

n

d d d

n n
d d d

N A N A N A N A N A N A
  

  
           

where

0 0 1
0 0 1 1 1 2 2 2 2( ) , ( ) ( ), ( ) ( ) ( ), ,N A A N A A Ker N A A Ker Ker         

0 1( ) ( ) ( ), ,n
n n n nN A A Ker Ker       

0 if is even,| ( ) if is even,

| ( ) if is odd.0 if is odd,

n
n n

n n n
n n

nN A n
d d

N A nn
     

  

It is easy to see that the inclusions of abelian monoids : ( ) , 0,n n ni N A A n   assemble into a  -morphism

of nonnegative chain complexes

2 1

2 1

1 02 1

2 1

2 1

1 2 1 0

1 2 1 0

( ) : ( ) ( ) ( ) ( ) ( ) 0

: 0.

  

  



  

  



  


  

          

          

     

 

 

n

n

n nA

n

n

d d d

n n
d d d

i i ii i i

n n

N A N A N A N A N A N A

A A A A A A

Consequently, for each n, we have a natural homomorphism of abelian monoids

( ) : ( ( )) ( ) ( ), ( )( ( )) ( ).n A n n n n AH i H N A H A H A H i cl a cl a  

Now recall that a simplicial abelian monoid is a presimplicial abelian monoid A together with degeneracy

homomorphisms

1: , 0 ,i
n n ns A A i n  

satisfying

1
1

1

1
1

, ,

id, , 1,

, 1,

j i
nn

i j
n n

j i
nn

s i j

s i j j

s i j









  


   
   

and

1
1 1 , .ji j i

n n nns s s s i j
  

Elements of nA  are called n-simplices.
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Let A and A  be simplicial abelian monoids. A simplicial map :f A A   is a family of homomorphisms

0( : )n n n nf A A   which commute with the face and degeneracy operators.

One says that a simplicial abelian monoid A satisfies the Kan condition if for every collection of 1n 

n-simplices 10 1 1 1, , , , , ,k k na a a a a     satisfying the compatibility condition 1( ) ( ), ,i j
n j n ia a i j   

, ,i k j k   there exists an ( 1)n  -simplex  a such that 1( )i
n ia a   for .i k

Let A be a Kan simplicial abelian monoid. The abelian monoid 0 ( )A , the monoid of path components of

A, and the abelian group ( ), 1,n A n   the n-th homotopy group of A, are defined as follows:

0 0 0( ) / , ( ) { | ( ) 0, 0 } / , 1,i
n n n nA A A a A a i n n          

where , 0,n n   is a congruence given by

1 1there is with ( ) ,n
n n na b c A c a     

1
1 1( ) , and ( ) 0 for 0 .n i

n nc b c i n
      

(See e.g. [5] for details.)

Theorem 4. Let A be a Kan simplicial abelian monoid. Then the monoid ( ( )), 1,nH N A n   is a group,

and coincides with the group ( )n A . If, in addition, 0 ( )A  is a group, then 0 ( ( ))H N A  is also a group, and

coincides with 0 ( )A .

Before we continue, we recall that the group completion of an abelian monoid S can be constructed in the

following way. Define an equivalence relation ~ on S S  as follows:

( , ) ~ ( , ) for some .u v x y u y z v x z z S      

Let [ , ]u v  denote the equivalence class of ( , )u v . The quotient set ( ) /~S S  with the addition

1 1 2 2 1 2 1 2[ , ] [ , ] [ , ]x y x y x x y y     is an abelian group (0 [ , ], [ , ] [ , ])x x x y y x   . This group, denoted by

( )K S , is the group completion of S. The canonical homomorphism : ( )Sk S K S  sends x to [x,0].

Proposition 5. Suppose that  A is a simplicial abelian monoid, ( )K A  its group completion and

: ( )Ak A K A  the canonical simplicial map. Then the induced homomorphism

( ) : ( ) ( ( )), ( )( ( )) ([ ,0]),n A n n n AH k H A H K A H k cl a cl a 

is an injection for each  n.

This proposition, Theorem 4 and Theorem 1.7 of [6] lead to

Theorem 6. Let  A be a Kan simplicial abelian monoid such that 0 ( )A  is a group. Then the map

( ) : ( ( )) ( ), ( )( ( )) ( )n A n n n AH i H N A H A H i cl a cl a  ,

is an isomorphism for all n.

Combining Theorems 4 and 6, we have

Corollary 7. For any Kan simplicial abelian monoid  A with 0 ( )A  a group, ( )nH A  is isomorphic to

( )n A  for all  n.

Note that all the results stated here for simplicial abelian monoids admit straightforward generalizations to

the case of simplicial semimodules.
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maTematika

simplicialuri  abelis  monoidebis  homologiis
monoidebis  Sesaxeb

a. paWkoria

ivane javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti, a. razmaZis  maTematikis
instituti, Tbilisi, saqarTvelo

(warmodgenilia akademiis wevris x. inasariZis mier)

presimplicialuri S naxevradmodulis homologiis Hn(S) naxevradmodulebi
Seswavlilia im SemTxvevaSi, roca S aris simplicialuri abelis monoidi. kerZod,
dadgenilia, rom  Tu simplicialuri  abelis monoidi A akmayofilebs kanis pirobas da
0(A) jgufia, maSin Hn(A) monoidi n(A) jgufis izomorfulia ( 0n  ).
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