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ABSTRACT. We present a number of results concerned with discrete topological and geometric
invariantsof quadratic endomor phismsof real vector spaces. Themain attention isgiven tothe mapping
degreeand cardinalitiesof fibresof proper endomor phism. Concerningtopological invariants, we present
ageneral estimatefor the mapping degreeand verify itsexactnessin variousclasses. Next, weintroduce
several geometric invariants derived from the structure of the singular set and discriminant of
endomor phism. For stable quadr atic endomor phisms, we also consider an additional invariant arising
from theclassification of stablesingularities. Several related resultsand conjecturesar ealso discussed.
© 2017 Bull. Georg. Natl. Acad. Sci.
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Quadratic mappings between real vector spaces appear in awide variety of problems and were studied by
many authors [1-3]. In many problems it is important to have effectively computable invariants of such
mappings with respect to various equivalence relations. The two most natural and important equivalence
relationsin this context are the topological equivalence and geometric equivalence. In some casesit appears
possible to describe the equivalence classes of quadratic mappings using certain discrete invariants like the
mapping degree or Euler characteristics of fibres [1, 4]. This problem becomes especially interesting and
important in the class of mappings which are stable with respect to one of the aforementioned equivalence
relations. Recall that amap Fiscalled stablewith respect to an equivalencerelation T if it hasa neighborhood
consisting of maps T-equivalent to F. A natural general problem isto describe geometric equivalence classes
of mappings. In this context, in addition to topological invariantsit is natural to consider discrete invariants
of the singular set and discriminant of mapping [5].

In this paper we discuss some discrete invariants in the case of quadratic endomorphism of real vector
space. One of the most natural and practically important topological invariants is the mapping degree and
many of our considerations are concerned with thisinvariant. Our first main result gives an exact estimatefor
the mapping degree of quadratic endomorphism (Theorem 2). We also give explicit examples of quadratic
endomorphisms with the maximal possible index in al dimensions. These results are obtained using the
algebraic formulafor the mapping degree developed in [6, 7]. After that we introduce more subtle discrete
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8 Giorgi Khimshiashvili

geometric invariants of endomorphism (the type and Ehresmann graph) and compute them in several cases.
Our considerations are partially motivated by some recent results presented in [2, 3]. In conclusion we
present several related results and conjectures.

We begin with recalling certain general concepts and results of topology and singularity theory. As usual
a continuous mapping F of topologica spaces is called proper if, for any compact subset Y of the target
space, the preimage FY(Y) is also compact. If F;: R” — R" is a proper mapping (endomorphism) then an
important topological invariant of F is given by the mapping degree Deg F defined as follows. From the
properness if follows that F can be extended to a continuous self-mapping [F]: S' — S" of the n-sphere S
obtai ned as the one-point compactification of R". The mapping degree Deg Fisdefined asthe usual topol ogi-
cal degree of [F], which is defined for any continuous self-mapping of an oriented n-manifold without
boundary [4]. As is well known, Deg F is invariant with respect to proper homotopies and topological
equivalence of maps|[4]. For differentiable endomorphism F, one can consider itssingular set S(F), defined as
the set of all points p such that jacobian J(p) vanishes, and the set of singular values defined as A(F)=
F(S(F)). For convenience and brevity wewill say that S(F) isthe spoiler of F and A(F) isthe discriminant of
F. The set of regular values Reg F is defined as the complement of the discriminant A(F). Thusjacobian J. of
Fisnon-zero at any preimage of apoint p € Reg F.

If aproper endomorphism F asaboveisalgebraic then preimage of any pointisfiniteand Deg F coincides
with the sum of the signs of the Jacobian J. taken over the preimage of any regular value of F [4]. Denote by
r(F) the number of componentsr(F) of theset or regular valuesReg F. If Fisaproper al gebraic endomorphism,
thenr(F) isfiniteand the cardinality of thefibre F(q) isthe samefor all pointsqinafixed component of Reg
F, which followsfrom the Ehresmann theorem on the fibres of smooth submersion [5]. Thuswe abtain afinite
list ©(F) of (not more than r(F)) non-negative integers given by all possible cardinalities of preimages of
regular values. Thelist t(F) iscalled thetype of F (cf. [2]) (sometimesitisalso called the generic type of F).

Many of our considerations are connected with the concept of geometric equivalence which isthe same
as the right-left-equivalence of mappings used in singularity theory [5]. Recall that two differentiable
endomorphismsF,, F, arecalled geometrically equivalent (or RL-equivalent) if there exist two diffeomorphisms
SandT of R"suchthat F =SF, T*. Obviously, DegF, r(F) and t(F) are the samefor geometrically equivalent
endomorphisms and they provide typical examples of discrete invariants we are interested in.

In fact, the diffeomorphic type of the spoiler S(F) and discriminant A(F) are also invariants of geometric
equivalence but they are often too complicated to work with and so we restrict ourselves to the discrete
invariants introduced above.

The concept of geometric stability, in the sense explained in the introduction, plays fundamental rolein
singularity theory and nonlinear analysis. For a stable endomorphism F, one can introduce a more refined
discrete invariant by considering the canonical stratifications Q (F) and Q,(F) of S(F) and A(F) respectively
(see, e.g., [9]). By a dtratified version of Ehresmann theorem, for a stable endomorphism, the number of
preimagesisthe same on any stratum[5]. So onemay enrich t(F) by joining all possible cardinalitiesof fibres
over each stratum of Q, (F). The resulting set of non-negative integers will be denoted < (F) and called the
stratified type of .

Finally, for better understanding of qualitative behaviour of fibresit is useful to describe the changesin
topology of fibres when the image point transversally crosses one of the regular strata of discriminant. They
can be conveniently represented in the form of the so-called bifurcation diagram B(F) which isdefined asa
graph with vertices labeled by the components of regular values and edges between each pair of adjacent
components. In an analogous way one can define the stratified bifurcation diagram B ,(F) having as vertices
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Discrete Invariants of Quadratic Endomorphisms 9

al strataof the canonical stratification Q, (F). Asanillustration, in the sequel we compute these invariantsin
afew examples.

To giveamore clear idea of the resultswe are aiming at, we discussfirst proper quadratic endomorphisms
of the plane and present abunch of results available in this case (Theorem 1), which may be considered asa
paradigm for further devel opments. Similar resultsare availablefor homogeneous quadratic endomorphisms
inarbitrary dimension (Theorem 2). Recall that a polynomial endomorphismiscalled d-homogeneousif all of
its components are homogeneous d-forms. For d=2, we get the definition of homogeneous quadratic
endomorphism. Obviously, the zero-sets of its components consist of a system of lines through the origin
which for convenience will be called zero lines. We are now in a position to formulate and explain the first
main result of this note.

Theorem 1. Homogeneous quadratic endomorphism of the planeis proper if and only if the zero-sets of
its components have no common zero lines, i.e. Z, N Z, ={0}. The mapping degree Deg F of a proper
quadratic endomorphism can only take values-2, 0, 2. Theimage of F isconvex and the singular set consists
of lines the number of which does not exceed two. The singular point at the origin has multiplicity four. The
number of pointsin any regular fibreiseven. The maximal number of pointsin any fibre of Fisfour. Preimages
of pointsin the bifurcation diagram may consist of one or three points. Two proper quadratic endomorphisms
are geometrically equivalent if and only if their bifurcation diagrams are isomorphic as graphs.

Outlineof theproof of Theorem 1. Thefirst statement follows from the Hadamard theorem [4]. The second
onefollowsfromthe combinatorial formulafor the degree of homogeneous endomorphism of theplaneinterms
of the zero-lines of its components. I ndeed, it isknown that the topol ogical degree of such an endomorphismis
equal to onehalf of the number of interlacing polar linesfromZ and Z, (see, e.9., [4]). It followsthat the absolute
value of Deg F cannot exceed two since the number of interlacings cannot exceed four. Convexity of theimage
isaspecia case of agenera theorem (see, e.g., [1]). The structure of singular set follows from the homogeneity
of the Jacobian of F. Thefact that the mapping degreeis even followsfrom the fact that the singular point at the
origin has multiplicity four. The number of pointsin aregular fibre has the same parity asthe mapping degree.
Thisnumber does not exceed four by Bezout theorem. It is known that the cardinality of fibreismaximal for a
regular point. Over a point of bifurcation diagram, one or two pairs of preimages coincide so the number of
preimages can be one or three. The last statement follows by analyzing the list of normal forms givenin [3].
These observations can easily be turned into arigorous proof, which we omit for the reason of space.

Remark 1. Thus, inthis case weknow the possible structure of al fibres. In particular, possible cardinalities
of preimages are 0, 1, 2, 3, 4. The bifurcation diagram may contain up to 5 vertices corresponding to the
possible cardinalities of preimages. Notice that here the number of preimages coincides with the Euler char-
acteristic of the fibre. It is easy to calculate it in concrete cases using an algebraic formula for the Euler
characteristic developed in [8]. The same formula enables one to effectively verify the non-degeneracy
condition. Indeed, non-degeneracy means that the system of three equations {f (x,y)=0, f,(x,y) = 0, x> + y*-
1 =0} doesnot have real solutions, i.e., the Euler characteristic of this set should vanish.

Remark 2. Inasimilar way one can obtain acriterion of propernessin more general case of non-necessar-
ily homogeneous quadratic endomorphism.

Remark 3. In fact, all statements of Theorem 1 can be proven using case-by-case analysis based on the
complete list of geometric equivalence classes of quadratic endomorphisms of the plane givenin[3]. Inthe
sequel we compute discrete invariants for some of the normal formsgivenin[3].

Remark 4. In the situation of Theorem 1 one may also use the concept of local algebra defined as the
factor-algebra of the algebra of formal power series over the ideal generated by the components of
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endomorphism [5]. It iswell known that a d-homogeneous endomorphism F of Euclidean space R" is proper
if and only if itslocal algebraat the originA (F) hasfinite dimension called the multiplicity of F at the origin.
In such cases the multiplicity m (F) isaways equal to d". In other words, the local algebraat theorigin [5] is
ad"-dimensional associative algebra. It is natural to wonder how many different isomorphism classes of d"
dimensional algebrasarisein thisway. In general thisisadifficult and widely open problem but for homoge-
neous quadratic endomorphism of the plane the answer is simple and easy to prove: there are exactly three
isomorphism classes of local algebras and they are classified by the value of local mapping degree at the
origin (as was stated above the latter can only equal -2, 0, 2). Thelocal algebrais an invariant of geometric
equivalence [5] and can be used for obtaining discrete invariants.

Remark 5. Homogeneous endomorphisms of the plane are not geometrically stable. This follows, in
particular, fromthefact that the multiplicity of singular point at the origin isbigger than three whichisthetop
(maximal possible) multiplicity of astable map inthiscase (multiplicity of cusp). So one may wish to consider
their stable perturbationsintroduced by H.Whitney [4]. In the sequel we give examples of stable perturbations
of homogeneous quadratic endomorphisms.

Remark 6. Wewill show that, in contrast to Theorem 1, the mapping degreeis not acompl ete invariant of
geometric equivalence in all dimensions bigger than two. At the same time the fibre type and bifurcation
diagram in certain cases enable one to distinguish equivalence classes, which may be considered as a
motivation for their investigation in our context.

Remark 7. Theorem 1 can be elaborated for an endomorphism F which is the gradient of a binary cubic
formf (homogeneous cubic polynomial intwo variables). Inthiscase, an explicit criterion of propernessof F
is expressed by vanishing of discriminant of f. Using Ehresmann theorem one can show that mapping
properties of F do not change in each component of discriminant of f in the space of its coefficients.
Investigating these properties for a representative of each component one can obtain a complete list of
possi ble combinations of mapping propertiesfor proper gradients of binary cubic forms. Another way to do
the same is to establish which of the normal forms given in [3] correspond to gradient endomorphisms and
then perform case-by-case analysis.

We proceed by presenting aremark on a problem of nonlinear analysis concerned with rel ations between
properness and surjectivity. It is well known that in some situations one can prove that a non-proper map
cannot be surjective. For example, thistrivially holds true for homogeneous endomorphisms of theline. The
sameistrue for homogeneous quadratic endomorphisms of the plane, which can easily be proven using case-
by-case analysis of the normal forms given in [3]. However, the implication “non-proper implies non-surjective”
is not true in dimensions bigger than three, even for quadratic endomorphisms [1]. At the same time, this
implication holds true for gradients of ternary cubic forms.

Proposition 1. Let F be the gradient of aternary cubic form f. Then if Fis non-surjective then F is not
proper.

The proof is obtained using case-by-case analysis based on the study of concrete representativesin each
component of complement of discriminant in the space of coefficients. Virtual extrapolation of the same
strategy gives good evidence that the implication “non-proper implies non-surjective™ holds true in the class
of all homogeneous quadratic endomorphisms of R3. Similar problems for d-homogeneous endomorphisms
with any d>2 are practically non-explored. One can also try to obtain similar results for quasihomogeneous
endomorphisms of the plane. More precisely, for which triples (w,, w,; d) of quasihomogeneous data each
non-proper gh-endomorphism of type (w,, w,,; d) is non-proper?

We now present an exact upper estimate for the topological degree of aproper quadratic endomorphism
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Discrete Invariants of Quadratic Endomorphisms 11

in arbitrary dimension n. Recall that the local algebra A (F) of non-degenerate homogeneous polynomial
endomorphism F is finite-dimensional and has a basis consisting of the classes of monomials. For any
polynomial P, by [P] isdenoted itsclassinthelocal algebra. The number of basis monomialsinA (F) having
a given degree can be found from the Poincare series of F, which is quite simple in case of quadratic
endomorphism [5]. The structure of local algebras was thoroughly investigated by many authors. In particu-
lar, the so-called Grothendieck duality impliesthat on any local algebrathere exists anon-degenerateinvari-
ant quadratic form called Gorenstein form. Aswas shownin[6, 7] the signature of Gorenstein formisequal to
the mapping degree of F[6, 7]. Below we use several further properties of Gorenstein formwhich can befound
in[5-7]. We are now ableto give the desired estimate.

Theorem 2. The mapping degree of proper quadratic endomorphism of odd-dimensional real vector space
equals zero. The absolute val ue of mapping degree of proper homogeneous quadratic endomorphism of R*
does not exceed
_ (Bk-1)!

T KI(2K-1)!

Thisestimateisexact. For any integer p of the same parity and smaller absolute value, there existsa proper
homogeneous quadratic endomorphism with the topol ogical degree equal to p. The cardinality of fibre can be
any number intheinterval [0, 2%].

Outlineof theproof of Theorem 2. The proof isbased on the aforementioned result stating that the (local)
mapping degreeisequal to the signature of the Gorenstein quadratic formA(F) onthe local algebraof F. The
maximal degree of monomialsinamonomial basisof A(F) isn. From the construction of Gorenstein quadratic
form follows that the mapping degree is not bigger than the number of elements of monomial basis of the
middle degree[7]. If nisodd there are no such monomials so the degree must vanish. For n=2k, the estimate
followsfrom the well known formulafor the number of monomials of fixed degree[5]. Exactnessfollows by
consideration of concrete examples. For n=4, put

f,=3x2-6x X, -6X X, -6X X, f,=-6X X, + 3X.7 - BX X, - 6X-X,,

f,=-6X X, - 6X.X, + 3X,2- 6 X, f, =-6X X, -6%- X, - 6X X, +3X 2,
and consider endomorphism F=(f , f,, ., f,). Fromthe general formulafor Poincare series of A (F) followsthat
the number of basis monomial s of the middle degree coincideswith the estimate given in Theorem 2. Comput-
ing the multiplication table of thisalgebraonefinds out that the squares of basis monomials of middle degree
are equal to positive multiples of the jacobian class[j(F)] in the local algebra. Since the Gorenstein formis
obtained as the multiplication in A (F) followed by projection on the class of jacobian [j(F)], its signature
equalsto the number of monomials of middle degree given in the above estimate. By the signature formula
the mapping degree is also equal to that estimate. This proves the exactness of the above estimate for n=4.

Analogous examplesin any even dimension n=2k are given by the formulas:

D(2k,2)

f=(k-05)x [(k-05)x - Zilxj 1i=1,.., 2

For each endomorphism of such kind, it is possible to explicitly construct amonomial basisfor thelocal
algebraand verify that the signature of Gorenstein formisequal to the number of basis monomialsof middle
degree. This means that the above estimate is exact in al dimensions. We omit computational details for the
reason of space.

Remark 8. Using an analog of Rouchet theorem for mapping degree it is easy to show that the same
estimateisvalid (and automatically exact) inthe class of all proper quadratic endomorphisms.
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Remark 9. It followsthat, unlike the case where n=2, the mapping degree does not distinguish geometric
isomorphism classes. Indeed, it iseasy to verify that, for arbitrary n, there exist endomorphismswhich are not
geometrically equivalent but have the same mapping degree.

Consider, for example,

G, = (X2 ., X2, H = (2X X, + X 2 2X X, +X.% oy 2X X, + X 7)
which arethe gradient mappings of cubic polynomialsx ®+ ... + X *and x- °X, + ... + X X, respectively. Itiseasy
to see that the local algebras of G, and H_ are non-isomorphic. So by Mather-Yau theorem [5] these two
endomorphisms are not geometrically equivalent. At the same time, if n is odd they both have vanishing
topological degree.

This example shows that for geometric classification of endomorphisms in dimensions higher than two
one needs more powerful invariants than the mapping degree, which motivates consideration of discrete
invariantslikethefibretype and bifurcation diagram. In the latter exampleit is straightforward to seethat the
two fibre types do not coincide, so the fibre type is really a useful invariant in geometric classification
problems.

Remark 10. An endomorphism of vector space can be interpreted as a vector field on this space. In
particular, the mapping degree of proper endomorphismisthe same asthe index of the corresponding vector
field. Taking thisinto account, our results may be compared with the results of [9] formul ated in the language
of vector fields. In particular, our Theorem 2 in case of quadratic vector fields explicatesthe general estimate
of index of homogeneous vector field givenin[9].

In conclusion we present afew results on discrete invariants of stable quadratic endomorphisms. Aswas
mentioned in the introduction, for stable endomorphisms, one has an additional invariant of geometric
equivalence. Namely, for each dimension n, there exists afinite list of singularity types which can occur as
singularities of stable endomorphismsindimension n[5]. The maximum of their multiplicitiesiscalled thetop
stable multiplicity. Thetheory of stable mappings statesthat, for agiven stable endomorphism F, the number
of stable singularities of top multiplicity t (F) isfinite[5]. Itisalso knownthat T (F) isaninvariant of geometric
equivalence and one can use it to distinguish classes of stable endomorphisms. Our earlier results on
algebraic formulae for topological invariants suggest that in concrete cases this invariant should be
algorithmically computable[8]. We were ableto provethisfor dimensionsn< 5.

Theorem 3. For a stable quadratic endomorphism of real vector space of dimension n <5, the number of
stable singularities of top multiplicity is equal to the signature of an explicitly constructible quadratic form.

For a stable quadratic endomorphism of the plane, singularities of top multiplicity are cusps. Using
Theorem 3 one can calculate the number of cuspsin concrete cases and, moreover, obtain an exact estimate
for the possible spectrum of values of 1 (F).

Proposition 2. For any stable quadratic endomorphism of the plane, the number of cusps does not exceed
three and this estimate is exact.

The proof isbased on case-by-case analysis of the normal forms of such endomorphismspresentedin[2].
An examplewith three cuspsis given by theformulae: f, = x?-y?+ x, f,=2xy - y.

Actually, this invariant can be used for classification of homogeneous endomorphisms as well. Let us
consider all stable small perturbations of F by small linear and free terms. Let us denote by {t(F)} the set
consisting of all numbers t(G) occuring in small stable deformations G of F. Obviously, this set isalso an
invariant of discrete equivalence. In many casesit can give more information than the mapping degree. For
example, astable small perturbation of the complex squaring mapping can have three or one cusp singularities
so{t(F)} ={1,3}. Atthesametime, for the quarto-mapping, thisinvariant isgiven by the pair { 0, 2} . Hence
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these two endomorphisms are not geometrically equivalent. It is easy to give further examples of
endomorphisms having equal mapping degrees but different invariants { = (F)} . For example, in odd dimen-
sionsthe mapping degreeisalways zero but there exist many pairs of endomorphismswith different stabilization
types. Similar problemsin higher dimensionswill be considered in our forthcoming publications.
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