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ABSTRACT. Recovery of a quantile function by means of the moments of underlying distribution is a
challenging problem due to instability of approximants, when taking into account higher integer order
moments of distribution. In the framework of probabilistic moment problem it is suggested to use the
sequence of transformed moments. Two cases where the support of underlying distribution is bounded
and unbounded from the above are considered. The uniform upper bound of the proposed approximate is
established. Also the modified approximation of the quantile function is constructed. It is shown that
proposed modification considerably improves the uniform approximation rate. Finally, based on the
suggested approximation, new nonparametric estimate of the quantile function is constructed and
corresponding error in sup-norm is investigated. The consistency in probability of corresponding estimate
is derived as well. Two examples are considered, when distribution support is finite and is unbounded
from the above. Two Tables with the average errors in sup-norm are recorded, and the consistency of
proposed estimates are justified via simulations as well. © 2017 Bull. Georg. Natl. Acad. Sci.
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Suppose that a distribution function (df) F is absolutely continuous with respect to Lebesgue measure on

( 0, ). In this note we only consider the case when the support of F is unbounded from the above, e.g.

supp  (0, )F   . There are several different approaches developed for estimating a quantile function

 ( ) inf : ( )Q x t F t x   of F nonparametrically. Let us mention  [1-5] among others. Recall also the approxi-

mation (see [6]) that recovers Q based on the knowledge of the sequence of frequency moments

 ( ) ( , ), 1,...,m S m j S j   

Here

0

( , ) [ ( )] , 1,...,jm j S S t dt j 


   , (1)

with S=1-F to be the survival function of F. Namely, the following approximate was proposed:
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1
, ( ) : ( )( ) ( )( )( 1) ( , ), (0,1)j k
S S

k x j k

j
Q x K m x m j S x

j k

 

 
 

   

    

     . (2)

In (2) and in the sequel, we will use the symbol     to denote the integer part of  , while by     we

denote the rounding part of  .

To estimate the quantile function Q, one can consider the empirical counterpart

ˆ ˆ{ ( , ), 1,..., }
ns nm m j s j     of Sm  defined in (1) and replace the later by ˆnsm  in (2). Here ˆˆ 1n ns F   and

n̂F  is the empirical df corresponding to the sequence of independent identically distributed (i.i.d) random

variables 1,...., nX X  drawn from F. The following estimate was derived:

1
ˆ ˆ, ( ) : ( )( ), (0,1)
n ns sQ x K m x x    , (3)

and several asymptotic properties of ˆ, ( )
nsQ x  have been investigated.

The main aim of this note is to study asymptotic behavior of another approximate and estimate of Q that

is based on the following sequence of transformed moments { ( , ), 0,..., }Fm m j F j    , where

0

( , ) [ ( )] ( )jm j F x F x dF x


   . (4)

In the sequel we assume that the first two moments of X are finite, and N  . The following notations

are useful as well: by ( , , ), (0,1)t c d t  , we denote the density function of a ( , , )Beta c d  distribution with

the shape parameters 1xc x    , and 1xd x       while f   denotes the sup-norm of f on   1, ,

for some
1

0
2

  . In addition let us recall the inequality (see[7]):

1( , 1, 1) ,0 1,
(1 )

C
t x x x

x x


              


(5)

valid for some constant 1 0C  .

Results

New approximation of Q is defined as follows:
1( ) : ( )( ), (0,1)FQ x B m x x 

    , (6)

where

1

0

( 1) ( , )( 2)
( )( ) :

( 1) !( )!

x j

F
j

m j x FГ
B m x

Г x j x j

 




  

   
 



     
        
 .

Note that substitution of Fm  defined by (4) in the right-hand side of (6) gives

1

0 0

( ) ( ( ), , ) ( ) ( , , ) ( )x x x xQ x F u c d udF u t c d Q t dt  


    . (7)

Hence, applying similar argument used in the proof of Theorem 1 and Corollary 1 from [8] we easily obtain the

following
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Theorem 1. Let 2Q Q Q  
     where 2  . If 'Q  is bounded and ''Q  is bounded and continuous on

 ,1   then for each )1,0(x  and      we have

(i)
' ''1 1 1

( ) {(1 2 ) ( ) (1 ) ( )} ( )
2 2

Q Q x x x x Q x x x Q x o  
 

          

(ii)
' ''1 3 1 1

{ } ( )
2 2 8

Q Q Q Q o    
    



(iii) ' ''
2

1 1 1
( ) ( ) [(1 2 ( ))( 3) ( ) (1 ) ( )] ( )

( 1)( 2) 2
Q x Q x x x x Q x x x Q x O   

  
            


Using the empirical df instead of F in (6) yields the estimate of Q

1
ˆ,

ˆ :
n

n F
Q B m    , (8)

It is worth mentioning that given n independent copies of X, 1,..., nX X  one can rewrite the components

of the sequence
n̂F

m  as follows:

( )
10

1ˆ ˆ ˆ( , ) [ ( )] ( ) ( )
n

j j
n n n i

i

i
m j F t F t dF t X

n n






   . (9)

Here ( )iX  is the i-th order statistic of the sample 1,..., nX X

Theorem 2. If Q is continuous on (0,1)  then ,
ˆ P

nQ Q  , uniformly on  ,1   as ( ),o n n   ,

for some
1

0
2

  .

Proof. Let us denote by

*
,

0

ˆ( ) ( ( ), , ) ( )n x x nQ x F u c d udF u


   , (10)

and rewrite the difference between ( )Q x
  and ( )Q x  as sum of the following expressions:

*
, ,

0

ˆ ˆ ˆ( ) ( ) [ ( ( ), , ) ( ( ), , ) ( ),n n n x x x x nQ x Q x F u c d F u c d udF u


       (11)

*
, ,

0 0

1€( ) ( ) ( ( ), , ) ( ) ( ) ( ( ), , ) ( ),n x x n x x n FQ x Q x F u c d ud F u F u F u c d udv u
n

   
 

        (12)

1

0 0

( ) ( ) ( ( ), , ) ( ) ( ) ( , , ) ( ) ( )x x x xQ x Q x F u c d udF u Q x t c d Q t dt Q x  


       . (13)

Where ,
ˆ( ) ( ( ) ( ))n F nv t n F t F t   represents the empirical process corresponding to the empirical df n̂F .

Note that since the function Q is continuous and the sequence of densities

{ ( , 1, 1), 1,....}x x                forms a  –sequence at x. We conclude from (13) that Q
  convergesges
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uniformly to Q as     (see [9], Ch. VII). From inequality (5) and the properties of ,n Fv  we easily derive the

upper bound for the variance of *
, ( ) ( )nQ x Q x 

   written in the form (12):

2 2
2 2 1

0

( )1
( ( ), , ) ( )

(1 )x x
C E X

F u c d u dF u
n nx x






 . (14)

Applying the Lagrange formula for difference between two beta density functions under the integral in

(11), one can write

,

0

1 1
, 3

( )1 ˆ( ( ), 1, 1) ( ) ( )
( )

41 2
sup ( )

(1 )
( )(1 )

x x n F

n F

x F u
F u c d v u udF u

x xn

C XCX
v u

x xn x x n

      
      




       




  


  

 
  
 

, (15)

for some ( )F u  with ˆ( ) ( ) ( )nF u F u F u   Note that ,sup ( )n F Pv u O  as n

Hence, we conclude that the bounds in (14)-(15) have the order
n


 and

n


 respectively, uniformly on

 ,1   for some small positive  .

Examples:

To conduct simulation study we consider two examples. Let us define the average errors in terms of the sup-

norm for the estimate ,
ˆ

nQ  as follows:

( )
, ,1 (1 )

1

1 ˆmax ( ) ( )
N

r
n nj

r

j j
d Q Q

N     


      .

Here ( )
,

ˆ r
nQ  denotes the value of ,

ˆ
nQ  evaluated on the r-th replication, and n is the number of replications.

In Example 1 we assume
1

~ ( ;1)
2iX Beta  and in Example 2, let us consider the model with ~ xp(1)iX E .

Tables 1 and 2 display the records of average errors ,nd  of ,
ˆ

nQ  defined in (8) when i.i.d. random variables

iX ’s are drawn from 1
( ;1)
2

Beta  and xp(1)E  distributions, respectively..

The errors recorded in Table 1 and Table 2 justify that the proposed estimate ,
ˆ

nQ  is consistent. In

addition, one can see that the error ,nd  decreases as both the parameter   and the sample size n are

increasing while the ratio
n


 is decreasing.
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Table 1: The average errors in sup-norm ,nd  of ,
ˆ

nQ  are recorded. Heree iX ’s are simulated from

1
( ;1)
2

Beta  and 0  .

d,n

n/  =20  =40  =60  =80  =100  =120
n=100 0.0962547 0.0916660 0.0874313 0.0905589 0.119838 0.145500
n=300 0.0769729 0.0552744 0.0496481 0.0506326 0.0521042 0.0485487

n=600 0.0739440 0.0477722 0.0415074 0.0328432 0.0357198 0.0345494

n=1000 0.0714150 0.0458237 0.0342856 0.0301669 0.0298474 0.0281450

Table 2: The average errors in sup-norm ,nd  of ,
ˆ

nQ  are recorded. Heree iX 's are simulated from

(1)Exp  and
1

5
 

maTematika

araparametruli kvantilis funqciis Sefaseba
transformirebuli momentebiT

a. sborSCikovi

ivane javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti, zust da sabunebismetyvelo
menierebaTa fakulteti

(warmodgenilia akademiis wevris e. nadaraias mier)

kvantilis funqciis aRdgena im SemTxvevaSi, roca cnobilia ganawilebis maRali rigis
momentebi, dResdReobiT warmoadgens Zalzed mniSvnelovan da saintereso problemas.
albaTur momentTa problemis pirobebSi miRebulia e.w. transformirebuli momentebis
gamoyeneba. ganxilulia ori SemTxveva, roca ganawilebis funqciis gansazRvris are sasruli
da usasruloa. kvantilis funqciis modificirebuli aproqsimacia iyo agebuli. naCvenebi
iyo, rom modificirebuli versiis aproqsimaciis rigi ufro maRalia vidre Tavdapirvelis.

d,n

n/  =20  =40  =60  =80  =100  =120
n=100 0.162267 0.174211 0.186656 0.188134 0.181125 0.207305
n=300 0.100038 0.111704 0.0988033 0.109227 0.106078 0.114819
n=600 0.0930935 0.0740184 0.0787526 0.0688771 0.0755520 0.0794764

n=1000 0.0757144 0.0645206 0.0610075 0.0593421 0.0559969 0.0684779
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axal SemoRebul aproqsimaciisTvis iyo gakeTebuli ara parametruli Sefaseba kvantilis
funqciis da cdomileba sup-normis pirobebSi iyo naCvenebi.moyvanili iyo am Sefasebis
Zaldebuloba. ori magaliTi ganawilebis funqciis gansazRvris aris Sesabamisad iyo
agebuli. ori cxrili saSualo cdomilebiT sub normis pirobebSi iyo daTvlili da
simulaciebiT damtkicebuli iyo misi Zaldebuloba.
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