
saqarTvelos  mecnierebaTa  erovnuli  akademiis  moambe,  t. 11, #4, 2017

BULLETIN  OF  THE  GEORGIAN  NATIONAL  ACADEMY  OF  SCIENCES,  vol. 11, no. 4, 2017
 

© 2017  Bull. Georg. Natl. Acad. Sci.

Cybernetics

An Open Priority Queuing System for Two
Maintenance Operations

Archil Prangishvili*, Revaz Kakubava**, David Gulua**,
Ekaterine Gulua**

 *Academy Member, Georgian Technical University (GTU), Tbilisi, Georgia
** Georgian Technical University (GTU), Tbilisi, Georgia

ABSTRACT. In the paper a multi-component redundant system with unreliable, repairable units is
considered. Two types of maintenance operations are performed in the system:1) the replacement of the
failed main unit by the redundant one; 2) the repair of the failed unit. The open priority queuing model
for the system’s dependability and performability analysis is constructed in the form of infinite system of
ordinary linear differential equations. In steady state it is reduced to the infinite system of linear algebraic
equations. © 2017 Bull. Georg. Natl. Acad. Sci.
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In classical reliability theory and practice the equipment (device) reliability provisioning was the main
direction. That is why in its framework the replacement problem for single-unit systems has been studied so
thoroughly. Also the repairman problem has been studied thoroughly mainly for such complex systems
which are reducible to simple two state failure criterion: serviceable (operative) and non-serviceable (failed)
(the same is “all or nothing” with Ushakov, “on” or “off” with Barlow, “active” or “inactive”, “good” or “bad”
with Epstein, “up” or “down” with Gertsbach [1-7]).

In the models, related to the replacement problem of single-unit systems, the time required to make a
replacement (replacement time) mainly has been considered to be zero. Even in the cases where replacement
time was non-negligible, the replacement problem of a single-unit system was described by alternating
renewal process, which has not been causing any difficulties [3-7]. As for complex systems, while analyzing
them the replacement time has not been taken into consideration [5].

As a matter of fact, in traditional cases of redundancy, active and redundant units (as a rule) were
territorially concentrated at the same place and the replacement of the failed active unit with a redundant one
meant the latter’s switching over, which was often automatically performed and its duration  was negligibly
small.

 In modern networks of the above type, however, redundant units are not directly attached (linked) to
active ones. They are placed at specific storages and may be located at the distance of tens, hundreds and
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sometimes thousands of kilometers away from the active units. Therefore, the delivery time of the redundant
unit to the place of the failed active one is quite essential.

In modern reliability theory the performance (effectiveness) analysis of complex systems with unreliable,
repairable components is one of the most topical directions in the field [1, 2]. This is exactly the system level
of investigation, unlike the component (equipment) level of classical reliability theory.

Performance analysis is related to systems for which one is not able to formulate the “all or nothing”
(serviceable or non-serviceable) type of failure criterion. Effectiveness characterizes a system ability to
perform its main functions even with partial capacity. Failures of some (or even majority of system compo-
nents) lead only to a gradual degradation of the system ability to perform its functions (operations). Actually
one deals with such indices like “partial availability”, “partial system down time”. These type of notions are
used to describe multi-component systems (e.g., global terrestrial systems, computer, telecommunication and
transportation networks, gas and oil distribution systems, power systems, defense systems, etc.) or the so
called systems with embedded “functional redundancy”, where there are optional ways to perform system
tasks [1, 2].

 At the same time, while studying the mentioned systems, traditional mathematical models of classical
renewal theory, reliability theory and queuing theory in many cases proved to be unsuitable, and there has
arisen an urgent necessity for the construction and investigation of completely new types of models for them
[1,2,8-14].

Subject of Study and its Initial Mathematical Description

The investigation subject of this paper is a multi-component redundant system with unreliable, repairable
units (Fig.1).

The system consists of identical active and redundant unit.  The numbers of active units are infinite and
the numbers of redundant ones are 0n  . The redundant units are designated for permanent replacement of
main components in case of their failure. It is supposed that for the normal operation of the system, the
serviceability of all active units is desired. However, if their number is less, then the system continues to
function, but with lower economic effectiveness.

The total failure rate of all active units is , the redundant ones are . A failed active unit is replaced by a
serviceable redundant one if there is an available unit in the system. In the opposite case the replacement will
be performed after the availability of the redundant unit. The failed units are repaired. They become identical
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Fig. Operation scheme of the redundant system (Bi – active units;   Ri - redundant units; Rep - repair facility).
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with the new ones and pass to the group of redundant units. The system has one replacement and repair
facility. The replacement and repair times have exponential distribution functions with parameters  and ,
respectively. When maintenance facility is busy, requests for replacement or repairs are queued. Note that we
consider the system with absolute priority of replacement. As we see, in a natural way we have a open
queuing system with two types of maintenance operations “ replacement and repair.

To this day, neither in the reliability theory nor in the queuing theory the above problems have been
investigated in general. At the same time modern research methods of Markov and semi-Markov processes
make it possible to construct and to analyze such models in the framework of the mathematical theory of
reliability and queuing theory [15,16].

For the last 10-12 years the experts of Georgian Technical University (GTU) have achieved notable
success in this direction [8-14]. Namely, the queuing systems of above type were first introduced by GTU
experts and have not been yet considered by other authors.

The Mathematical Model

To describe the considered system we introduce the random processes, which determine the states of the
system at the time t;

( )i t  – the number of units missed in the group of active units;

( )j t  – the number of non-serviceable (failed) units in the system.

Denote, ( , , ) { ( ) ; ( ) }, 0, ,..., .P i j t P i t i j t j i j i n i     

Proceeding in the usual way, we can set up the basic difference equations which relate the probability of
being in a certain state at time t t   to the probabilities of being in various states at time t. From these
difference equations we obtain the infinite systems of ordinary linear differential equations.

For n>0 we have:

(0,0, ) (0,0, )( ) (0,1, )d p t p t n p t
dt

     

(0, , ) (0, , )( ( ) ) (0, 1, ) ( ( 1)) (0, 1, ) (1, , )

1,..., 1;

d p j t p j t n j p j t n j p j t p j t
dt

j n

                

 

(0, , ) (0, , )( ) (0, 1, ) (1, , )d p n t p n t p n t p n t
dt

        

( , , ) ( , , )( ) ( 1, 1, )d p i i t p i i t n p i i t
dt

          (1)

( , , ) ( , , )( ) ( , 1, ) ( 1, 1, )

( 1, , )

d p i n i t p i n i t p i n i t p i n i t
dt

p i n i t

   



           

  

( , 1, ) ( , 1, )( ) ( , 2, )2

( 1, 2, ) ( 1, 1, ) ( , , )

d p i n i t p i n i t p i n i t
dt

p i n i t p i n i t p i n i t

   

  

          

         
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( , , ) ( , , )( ( ) ) ( 1, 1, )

( , 1, ) ( 1 ) ( 1, , ) , 1,..., 2.

d p i j t p i j t n i j p i j t
dt

p i j t n i j p i j t j i n i

   

 

        

          

For n=0 we have:

(0,0, ) (0,0, ) (1,0, )d p t p t p t
dt

   

( , 1, ) ( , 1, ) ( , , )d p i i t p i i t p i i t
dt

      (2)

 ( , , ) ( , , )( ) ( 1, 1, ) ( 1, , ) , 1,2,...d p i i t p i i t p i i t p i i t i
dt

           

It can be proved that for these systems the limit of ( , , )p i j t , as  t   exists for all i,j, if    and
  .

Denote ( , ) lim ( , , )tp i j p i j t . Let t   in (1) and (2) we obtain an infinite system of linear algebraic

equations with respect to ( , )p i j .
For n>0  we have (together with normalizing condition):

(0,0)( ) (0,1)p n p   

(0, )( ( ) ) (0, 1) ( ( 1)) (0, 1) (1, ) , 1,..., 1p j n j p j n j p j p j j n                

(0, )( ) (0, 1) (1, , )p n p n p n t      

( , )( ) ( 1, 1)p i i n p i i        (3)

( , )( ) ( , 1) ( 1, 1) ( 1, )p i n i p i n i p i n i p i n i               

( , 1)( ) ( , 2)2 ( 1, 2) ( 1, 1) ( , )p i n i p i n i p i n i p i n i p i n i                      

( , )( ( ) ) ( 1, 1) ( , 1) ( 1 ) ( 1, ) ,
1,..., 2

p i j n i j p i j p i j n i j p i j
j i n i

                  
   

0

( , ) 1
n i

i j i

p i j
 

 

  .

For n=0 we have (together with normalizing condition):
(0,0) (1,0)p p 

( , 1) ( , )p i i p i i  

( , )( ) ( 1, 1) ( 1, ) , 1, 2,...p i i p i i p i i i          (4)

 
1 1

(0,0) ( , ) 1
i

i j i

p p i j


  

   .

After finding the probabilities ( , )p i j , it is easy to calculate all steady-state dependability and perform-
ance measures for the considered system.

The results of the investigation of systems (3) and (4) will be published in the nearest future.

Conclusion

In the given paper an open priority queuing system for two parallel service operations is discussed. The
problem, which arises here is how to investigate the infinite system of linear algebraic equations.
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In general the study and solution of infinite system of equations, as a rule, is a very complex problem,
often insurmountable. But the matrices of our systems (3) and (4) are highly sparse and this gives us a chance
to advance in their investigation. Namely, the problem of existence and uniqueness of the solution has been
investigated. Also, the numerical algorithms have been developed, making it possible to find the approximate
solution by means of finite arithmetical operations. Finally, the error of the approximate solution has been
estimated.
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warmodgenil naSromSi ganxilulia mravalkomponentiani darezervebuli sistema,
romelic Sedgeba arasaimedo, aRdgenadi elementebisgan. am sistemaSi sruldeba momsa-
xurebis ori paraleluri operacia: 1) mtyunebuli elementis Canacvleba sarezervoTi;
2) mtyunebuli elementis aRdgena. agebulia rigebis Ria prioritetuli modeli sakvlevi
sistemis saimedoobisa da efeqtianobis analizisaTvis. is warmoadgens Cveulebriv wrfiv
diferencialur gantolebaTa usasrulo sistemas. misgan stacionarul mdgomareobaSi
miRebulia wrfiv algebrul gantolebaTa usasrulo sistema. amJamad mimdinareobs am
sistemis gamokvleva.
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