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ABSTRACT. It is shown that linear and nonlinear theories of surface gravitational waves are incorrect,
since they are based on the assumptions of the incompressibility of liquids and the potentiality of their
motion, which are not satisfied in the gravitational field of the Earth. Moreover, the incorrectness of
these theories is further aggravated by the fact that in order to simplify the solution of the hydrodynamic
equations the hydrostatic averaging method is used, with the help of which the phase velocity of both
linear and nonlinear surface gravitational wave whose square is equal to the product of the acceleration
due to gravity of the reservoir depth is determined. According to new theoretical results, which were
published by the author earlier, it is known that the linear theory of surface gravity waves describes only
capillary waves, on which, the influence of the Earth’s gravitational field is negligible and thus their
phase velocity does not depend on the acceleration of gravity. In this paper, nonlinear equations for wind
and tsunami waves are obtained, which are devoid of the drawbacks mentioned above. On the basis of
logical reasoning, which requires the fulfillment of natural conditions on the water surface, it is shown
that the phase velocity of  tsunami wave should depend on the acceleration of gravity and depth as well as
on the thermodynamic characteristics of air and water. © 2017 Bull. Georg. Natl. Acad. Sci.
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A great number of works of both modern scientists and prominent scientists of the 18-19 centuries were

devoted to the problems of surface gravity waves (waves on water or water waves). These waves are

generated and propagated on a plane interface between water and air and are described by either linear (when

the perturbed values of the thermodynamic parameters of these two media are much smaller, than their

equilibrium value) or nonlinear equations of hydrodynamic (when these perturbations are equal to or greater,

than their equilibrium value). Accordingly, there are two theories of surface gravity waves:  linear and nonlinear.

Both these theories are based on two fundamental assumptions: water is an incompressible medium and its

motion is potential. We showed the erroneousness of these assumptions back in 2014 in [1] and then in [2]

and [3]. They convincingly prove that the linear theory describes only capillary waves, on which gravita-

tional field of the Earth practically does not have effect. Thus the capillary-gravitational waves do not exist in

nature. Consequently, there is no condition limiting the length of the capillary wave. As for the nonlinear

theory, its erroneousness is further aggravated by the fact that it uses the hydrostatic averaging method,
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which refers only to the vertical component of the equation of motion, and the change the vertical component

of the fluid velocity is neglected [4-8]. In the works mentioned above, we show that application of this method

is incorrect, because neglecting the change of the vertical component of velocity leads to an equation for the

equilibrium of the liquid, when oscillations are impossible. It is obvious that a theory based on so many

incorrect assumptions, cannot give correct results. Readers may object referring to the Korteweg-de Vries

equation [5], which despite the presence of all of the listed shortcomings, still gives a completely understand-

able analytical solution describing solitary waves. In response to this objection, an example of the Kelvin

problem of a capillary-gravitational wave [3] may be given, which despite the containing errors in the particu-

lar case, when g=0, gives the correct result.   The purpose of this paper is to suggest our vision of method for

solving a nonlinear problem of surface gravitational waves.

Derivation of the Nonlinear Equation of the Gravitational Wave in Liquids

We write the system of hydrodynamic equations for an ideal fluid in the gravitational field of the Earth in

Lagrange coordinates:
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We note that the adiabatic equation is already used here, and pC is the isobaric speed of sound, which

according to the new theory [3] can be considered infinitely large for water, and thus the sound velocity in

water is adiabatic, i.e. sC C . The latter means that water is compressible medium and the use of the

incompressibility condition 0V 


is unacceptable. Since nonlinear waves of wind and tsunami propagate

at the interface between water and air, we are dealing with a typical problem of tangential discontinuity and

therefore the method of solving it must be similar to the method of solving the problem of linear surface wave.

As is known, this method is that the wave equations for each of these two media are solved, and then these

solutions are joined on the surface of a tangential discontinuity. Thus, by analogy with the linear theory, we

represent all quantities in the form of a sum of their stationary and perturbed values:
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i.e.we assume that in a state of equilibrium the liquid is stationary and the perturbed  value of pressure

satisfies the condition: 0P P  . Substituting (2) into (1) and applying the equations of equilibrium and the

state of the fluid   2
0 0 , 1P g C P      , we easily obtain
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We introduce a dimensionless perturbation of the pressure 2
0P P C , after which the system (3)

takes the form:
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Applying the operator   to first equation of system (4) and operator d dt  to the second equation and

equating their right-hand sides, we obtain
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Equation (5) is a nonlinear equation of the gravitational wave in fluid, which, if neglected by nonlinear

terms, transforms into the linear equation (62) in [3]. This equation must be supplemented by the first

equation of the system (4) and thus we obtain closed system of four equations with respect to four unknowns

, , ,x y zV V V P . For water 2 9
0 2,25 10C    Pa and atmospheric pressure at sea level   50 10P   Pa, and thus

it is obvious that the dimensionless pressure perturbation caused by the wind 1P  , and it should be

dropped in comparison with the unit. Tsunami waves are generated as a result of a powerful earthquake,

reaching a magnitude of 8M  on the Richter scale. Magnitude is associated with the energy released by

the earthquake by formula

 2
lg 4,8

3
M E  (6)

and consequently, for the magnitude 8M   we get 16,210E  J. If this energy is released in volume
710  m3, which is quite real, then a unit should be dropped in comparison with P . Thus, we have the

following two systems of non-linear differential equations for wind and tsunami waves:
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Discussion of Methods for Solving the Problem and the Expected Results

Analysis of the literature devoted to the problems of nonlinear gravitational waves on the water surface

shows that the results of their analytical and numerical solutions are very approximate and unreliable. This is

due to the extreme mathematical complexity of the equations being solved, for the simplification of which

unreasonable methods are often used. The situation is further aggravated by the fact that, the entire theory

of surface gravitational waves is based on incorrect assumptions. They have been eliminated in the linear

theory [1-3], but remain in the nonlinear theory and as long as this is the so, no progress in solving these
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problems can be expected. Our pessimism is shared by the author of [8, p.2],

In this section, we intend to discuss some of the well-known aspects of the tsunami theory that seem

dubious to us and to offer their alternatives. We start with the method of hydrostatic averaging, from which

in the linear theory the expression for the phase velocity of the surface gravitational wave pU gh

follows, where h is the depth of the reservoir. It is noted in [7] that rigorous justification of this approximation

was never given, however, it is  often used in the nonlinear theory, since by integrating the equation of motion

along the vertical coordinate,  it allows to express the unknown pressure in the liquid as the sum of terms

related to atmospheric pressure and sea level change. It is shown in [1-3] that: firstly, hydrostatic averaging

is unacceptable in principle, since it leads to an equilibrium equation, which excludes any vibrational motions

in liquid and, secondly, in the linear theory, the gravitational acceleration disappears in connection with the

negligent smallness of the gravitational effect at small perturbations and thus, this formula does not follow

even from the linear theory. Nevertheless, this expression is widely used in determination of the phase

velocity of nonlinear wave, including the tsunami wave. For example, Tables in [7], show tsunami wave-

lengths,  with periods of 5 minutes and 30 minutes for depths from 10000 to 100 meters, calculated by this

formula. The article does not say how much these calculations correspond to real measurements (obviously

such measurements were not made), but they show a tendency of shortening the wavelength and  slowing

down as it approaches the shore, i.e. at 0h , wavelength 0  and phase velocity 0pU  . This trend

is not consistent with reality, because at run-up into the shore, the tsunami wave is accelerated and accumu-

lates huge kinetic energy, which cannot be explained by the destruction of the wave even ten meters or more

in height.

It should also be noted that this formula is obtained for water of constant depth and it cannot be applied

to the case of variable depth. In the linear theory, the phase velocity of a capillary wave in shallow water is

determined by the formula 0pU k h   [3]. Here, the coefficient of surface tension  , depth h and

density 0  are constants related only to water, i.e. formula does not contain the characteristic values related

to air, in spite of the fact that the capillary wave propagates at the interface of these two media. From this

formula it is clear that 0 0ph U   , which is quite natural, since the perturbations are so small that their

appearance on the surface of the Earth  does not entail any changes in the air. In the nonlinear theory we are

dealing with large perturbations and if we could somehow determine the analytic expression for the phase

velocity of a nonlinear wave on the surface of water of constant depth, we assume that it should have the

form:

 1 01 02 21 , , , ,pU C f h g C     . (9)

Here, 1C and  0 1;2i i  are the speeds of sound and density in air and water, respectively, and f is

certain dimensionless function that varies within 0 1f   and satisfies the condition: 0f  \at 0h .

Such form of phase velocity of a nonlinear surface gravitational wave follows from a completely logical

assumption that since the wave propagates at the interface between air and water, its phase velocity must

contain the thermodynamic characteristics of these two media and a strong perturbation of the earth’s

surface  0h   should propagate in the air at the speed of sound. It is also important to note that for the

origin of tsunami, the determining factor is not the energy but the density of energy released during the
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earthquake. Perhaps this is the reason that sometimes a sufficiently powerful earthquake does not lead to the

emergence of tsunami.

The most relevant for nonlinear waves propagating on the water surface of variable depth is the problem

of the evolution of the wave amplitude at run-up into the shore. A brief review of the papers devoted to this

problem is given in [9]. It gives the Boussinesq’s formula, which predicts that max 1 h   and the Green’ss

formula, from which it follows that 1 4
max 1 h  , where max  and h are the maximum amplitude and variable

depth which are normalized to some constant depth d. The author cites the opinion of Miles [10], according

to which the Boussineq’s formula is valid for a small slope of the coast but takes into account the nonlinearity
of the wave, while the Green’s formula is valid for linear waves of small amplitude when coasting to shore with
a large slope. In our opinion, the validity of these formulas is very doubtful, since they do not take into

account the gravitational acceleration, the wavelength and its velocity, i.e. the amplitude of any wave should

grow equally.

The physical reason for the increase of the amplitude of the tsunami wave at run-up into the shore is

explained as follows [11]: when approaching the shore, the depth of the ocean decreases, and the wave slows

down, so that the kinetic energy of the liquid particles distributed vertically concentrates in an ever smaller

column of liquid and therefore the wave height increases. We do not exclude that such process really takes

place, but in our opinion the main reason is connected with the outflow of water before the tsunami. The

explanation of the cause of the outflow also seems unconvincing to us, for it is associated with the failure of

the ocean floor during an earthquake. We think that the more convincing explanation of these phenomena is

the following: when approaching the shore, the speed of the tsunami wave slows down to a certain depth*,

after which it accelerates and thus the second wave lags behind the first. Prior to the approach of the second

wave, the first wave has time to move away from the shore (outflow) and strike the second wave under arm,

reducing  its  acceleration, in consequence of which its amplitude rises sharply.

Conclusion

This article offers a qualitatively new approach to the problems of nonlinear surface gravity waves in general

and to tsunami waves in particular.We understand that experts using traditional methods may reject it, so as

it does not simplify, but rather complicates the solution of the problem. The complication lies not only in the

fact that we do not use the conditions of incompressibility of water and the potentiality of its flow, as well as

the method of static averaging, but in a greater degree by the fact that we are proposing to solve a nonlinear

differential equation with respect to the pressure for two media and to join these solutions on their boundary.
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geofizika

zedapiruli gravitaciuli talRebis arawrfivi
gantolebebi

v. kircxalia

i. vekuas sax. fizikisa da teqnologiebis soxumis instituti, Tbilisi, saqarTvelo

(warmodgenilia akademiis wevris T. WeliZis mier)

naCvenebia, rom zedapiruli gravitaciuli talRebis wrfivi da arawrfivi Teoriebi
arakoreqtulia, vinaidan isini emyarebian mosazrebebs siTxeTa ukumSvadobisa da maTi mo-
Zraobis potenciurobis Sesaxeb, romlebic ar sruldeba dedamiwis gravitaciul velSi.
garda amisa, maT arakoreqtulobas aRrmavebs isic, rom hidrodinamikur gantolebaTa
sistemis amoxsnis gamartivebis mizniT, maTSi gamoiyeneba hidrostatikuri gasaSualoebis
meTodi, romlis saSualebiTac ganisazRvreba wrfivi da arawrfivi zedapiruli gravita-
ciuli talRis fazuri siCqare, romlis kvadrati tolia simZimis Zalis aCqarebis da wylis
siRrmis namravlisa. axali Teoriuli Sedegebis Tanaxmad cnobilia, rom wrfivi Teoria
aRwers mxolod kapilarul talRebs, romlebzec dedamiwis gravitaciuli velis gavlena
umniSvneloa da amdenad, maTi fazuri siCqare ar Seicavs simZimis Zalis aCqarebas. warmodgenil
naSromSi miRebulia qarisa da cunamis talRebis wrfivi da arawrfivi gantolebebi, romlebic
ar emyarebian aRniSnul winaaRmdegobriv mosazrebebs. logikuri msjelobis safuZvelze,
romelic iTxovs wylis zedapirze bunebrivi pirobebis dakmayofilebas, naCvenebia, rom
cunamis talRis fazuri siCqare damokidebuli unda iyos simZimis Zalis aCqarebasa da
okeanis siRrmeze da aseve wylisa da haeris Termodinamikur maxasiaTeblebze.
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