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ABSTRACT. Itisshown that linear and nonlinear theoriesof surfacegravitational wavesareincorrect,
sincethey arebased on the assumptionsof theincompressibility of liquidsand the potentiality of their
motion, which are not satisfied in the gravitational field of the Earth. M oreover, theincorrectness of
thesetheoriesisfurther aggravated by thefact that in order to smplify the solution of the hydrodynamic
equationsthe hydrostatic averaging method is used, with the help of which the phase velocity of both
linear and nonlinear surfacegravitational wave whose squar eisequal tothe product of theacceleration
dueto gravity of the reservoir depth is determined. According to new theoretical results, which were
published by theauthor earlier, it isknown that thelinear theory of surfacegravity wavesdescribesonly
capillary waves, on which, the influence of the Earth’s gravitational field is negligible and thus their
phasevelocity doesnot depend on the acceler ation of gravity. In thispaper, nonlinear equationsfor wind
and tsunami wavesar e obtained, which are devoid of the drawbacks mentioned above. On the basis of
logical reasoning, which requir esthe fulfillment of natural conditionson thewater surface, it isshown
that the phasevelocity of tsunami wave should depend on the acceler ation of gravity and depth aswell as
on thethermodynamic characteristics of air and water. © 2017 Bull. Georg. Natl. Acad. Sci.
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A great number of works of both modern scientists and prominent scientists of the 18-19 centuries were
devoted to the problems of surface gravity waves (waves on water or water waves). These waves are
generated and propagated on a plane interface between water and air and are described by either linear (when
the perturbed values of the thermodynamic parameters of these two media are much smaller, than their
equilibrium value) or nonlinear equations of hydrodynamic (when these perturbations are equal to or greater,
than their equilibriumvalue). Accordingly, there are two theories of surface gravity waves: linear and nonlinear.
Both these theories are based on two fundamental assumptions: water is an incompressible medium and its
motion is potential. We showed the erroneousness of these assumptions back in 2014 in [1] and thenin [2]
and [3]. They convincingly prove that the linear theory describes only capillary waves, on which gravita-
tional field of the Earth practically doesnot have effect. Thusthe capillary-gravitational wavesdo not exist in
nature. Consequently, there is no condition limiting the length of the capillary wave. As for the nonlinear
theory, its erroneousness is further aggravated by the fact that it uses the hydrostatic averaging method,

© 2017 Bull. Georg. Natl. Acad. Sci.



Nonlinear Equations of Surface Gravity Waves 55

which refersonly to the vertical component of the equation of motion, and the change the vertical component
of thefluid velocity is neglected [4-8]. In the works mentioned above, we show that application of thismethod
isincorrect, because neglecting the change of the vertical component of velocity leadsto an equation for the
equilibrium of the liquid, when oscillations are impossible. It is obvious that a theory based on so many
incorrect assumptions, cannot give correct results. Readers may object referring to the Korteweg-de Vries
equation [5], which despite the presence of al of thelisted shortcomings, still givesacompletely understand-
able analytical solution describing solitary waves. In response to this objection, an example of the Kelvin
problem of acapillary-gravitational wave [ 3] may be given, which despite the containing errorsin the particu-
lar case, when g=0, givesthe correct result. The purpose of this paper isto suggest our vision of method for
solving anonlinear problem of surface gravitational waves.

Derivation of the Nonlinear Equation of the Gravitational Wavein Liquids

We write the system of hydrodynamic equations for an ideal fluid in the gravitationa field of the Earth in
Lagrange coordinates:

dr VY VVP. 6

We note that the adiabatic equation is already used here, and C,, isthe isobaric speed of sound, which

according to the new theory [3] can be considered infinitely large for water, and thus the sound velocity in
water is adiabétic, i.e. C=C;. The latter means that water is compressible medium and the use of the
incompressibility condition vV =0 isunacceptable. Since nonlinear waves of wind and tsunami propagate
at the interface between water and air, we are dealing with atypical problem of tangential discontinuity and
therefore the method of solving it must be similar to the method of solving the problem of linear surface wave.
Asis known, this method is that the wave equations for each of these two media are solved, and then these
solutions are joined on the surface of atangential discontinuity. Thus, by analogy with the linear theory, we
represent all quantitiesin the form of a sum of their stationary and perturbed values:
P=R(2)+P'(xy,zt), r=rq+r'(xy,zt), V=V'(xy,zt). ©
i.ewe assume that in a state of equilibrium the liquid is stationary and the perturbed value of pressure

satisfies the condition: P’ > R, . Substituting (2) into (1) and applying the eguations of equilibrium and the

state of thefluid (VR =T 09,7 ' =(Y/C?)P'), we easily obtain

dv PG-C?VP'

At 1 CPP
vv:_+d_P. &)
roC-+p dt

We introduce a dimensionless perturbation of the pressure P = P'/rg C?, after which the system (3)
takesthe form:
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dvV _ Pg-C*vP

dt 1+P

ot @
1+P dt

Applying the operator v to first equation of system (4) and operator d/dt to the second equation and
equating their right-hand sides, we obtain
P\’ d%p
— o= 251,85\ (P 1. 5
VP(g+c VP)—C AP(1+P)_(dtj (1+ P)—dt2 . )
Equation (5) isanonlinear equation of the gravitational wave in fluid, which, if neglected by nonlinear

terms, transforms into the linear equation (62) in [3]. This equation must be supplemented by the first
equation of the system (4) and thus we obtain closed system of four equations with respect to four unknowns

Vy, V.V, P . Forwater r (C? = 2,25x10° Paand atmospheric pressure at sealevel P(0) = 10° Pa, and thus
it is obvious that the dimensionless pressure perturbation caused by the wind P <<1, and it should be
dropped in comparison with the unit. Tsunami waves are generated as a result of a powerful earthquake,

reaching a magnitude of M > 8 on the Richter scale. Magnitude is associated with the energy released by
the earthquake by formula

M :é(IgE—4,8) ©)

and consequently, for the magnitude M >8 we get E >10'%2? J. If this energy is released in volume
u =10” m?, which is quite real, then a unit should be dropped in comparison with P . Thus, we have the
following two systems of non-linear differential equations for wind and tsunami waves:

—\2 2=
VI5(§+C2VI5)—CZAI5:[d—P] —d—zp
Wind wave - - dt t )
v _ Pg-C2vP
dt
=\2 =, o=
vﬁ(g+czvﬁ)-c25A5=[z—T) - Pgtzp
Tsunami wave - o . )
dv _ Pg-Cc*vP
dt P

Discussion of Methods for Solving the Problem and the Expected Results

Analysis of the literature devoted to the problems of nonlinear gravitational waves on the water surface
showsthat the results of their analytical and numerical solutions are very approximate and unreliable. Thisis
due to the extreme mathematical complexity of the equations being solved, for the simplification of which
unreasonable methods are often used. The situation is further aggravated by the fact that, the entire theory
of surface gravitational waves is based on incorrect assumptions. They have been eliminated in the linear
theory [1-3], but remain in the nonlinear theory and as long as this is the so, no progress in solving these
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problems can be expected. Our pessimism is shared by the author of [8, p.2],
In this section, we intend to discuss some of the well-known aspects of the tsunami theory that seem
dubiousto us and to offer their alternatives. We start with the method of hydrostatic averaging, from which

in the linear theory the expression for the phase velocity of the surface gravitational wave U, = @

follows, where histhe depth of thereservair. It isnoted in[ 7] that rigorousjustification of thisapproximation
was hever given, however, it is often used inthe nonlinear theory, since by integrating the equation of motion
along the vertical coordinate, it allows to express the unknown pressure in the liquid as the sum of terms
related to atmospheric pressure and sealevel change. It is shown in [1-3] that: firstly, hydrostatic averaging
isunacceptablein principle, sinceit leadsto an equilibrium equation, which excludes any vibrational motions
in liquid and, secondly, in the linear theory, the gravitational acceleration disappearsin connection with the
negligent smallness of the gravitational effect at small perturbations and thus, this formula does not follow
even from the linear theory. Nevertheless, this expression is widely used in determination of the phase
velocity of nonlinear wave, including the tsunami wave. For example, Tablesin [7], show tsunami wave-
lengths, with periods of 5 minutes and 30 minutes for depths from 10000 to 100 meters, calculated by this
formula. The article does not say how much these cal culations correspond to real measurements (obviously
such measurements were not made), but they show a tendency of shortening the wavelength and slowing

down asit approaches the shore, i.e. at h— 0, wavelength | — 0 and phase velocity U p — 0. Thistrend
isnot consistent with reality, because at run-up into the shore, the tsunami wave is accelerated and accumu-
|ates huge kinetic energy, which cannot be explained by the destruction of the wave even ten meters or more
in height.

It should also be noted that this formulais obtained for water of constant depth and it cannot be applied
to the case of variable depth. In the linear theory, the phase velocity of a capillary wave in shallow water is
determined by the formula U, =k/ah/r, [3]. Here, the coefficient of surface tension a , depth h and

density r , areconstantsrelated only to water, i.e. formula does not contain the characteristic valuesrelated
to air, in spite of the fact that the capillary wave propagates at the interface of these two media. From this
formulaitisclear that h— 0= U, — 0, whichisquitenatural, sincethe perturbations are so small that their
appearance on the surface of the Earth does not entail any changesin the air. In the nonlinear theory we are
dealing with large perturbations and if we could somehow determine the analytic expression for the phase

velocity of a nonlinear wave on the surface of water of constant depth, we assume that it should have the
form:

UpZQ[l—f(hag,rorroz'Cz)] ©

Here, C, and r (i :1'2) are the speeds of sound and density in air and water, respectively, and f is

certain dimensionless function that varies within 0< f <1 and satisfies the condition: f —0\at h— 0.

Such form of phase velocity of a nonlinear surface gravitational wave follows from a completely logical
assumption that since the wave propagates at the interface between air and water, its phase velocity must
contain the thermodynamic characteristics of these two media and a strong perturbation of the earth’s

surface (h = O) should propagate in the air at the speed of sound. It is also important to note that for the

origin of tsunami, the determining factor is not the energy but the density of energy released during the
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earthquake. Perhapsthisisthe reason that sometimes a sufficiently powerful earthquake does not lead to the
emergence of tsunami.

The most relevant for nonlinear waves propagating on the water surface of variable depth is the problem
of the evolution of the wave amplitude at run-up into the shore. A brief review of the papers devoted to this

problemisgivenin [9]. It gives the Boussinesq’s formula, which predicts that h,,, ~1/h and the Green’s

formula, fromwhichitfollowsthat h ., ~ :l/ hY4,whereh,,, and harethe maximumamplitudeand variable

depth which are normalized to some constant depth d. The author cites the opinion of Miles[10], according
to which the Boussineq’s formula is valid for a small slope of the coast but takes into account the nonlinearity
of the wave, while the Green’s formula is valid for linear waves of small amplitude when coasting to shore with
alarge slope. In our opinion, the validity of these formulas is very doubtful, since they do not take into
account the gravitational acceleration, the wavelength and itsvel ocity, i.e. the amplitude of any wave should
grow equally.

The physical reason for the increase of the amplitude of the tsunami wave at run-up into the shore is
explained asfollows[11]: when approaching the shore, the depth of the ocean decreases, and the wave slows
down, so that the kinetic energy of the liquid particles distributed vertically concentratesin an ever smaller
column of liquid and therefore the wave height increases. We do not exclude that such process really takes
place, but in our opinion the main reason is connected with the outflow of water before the tsunami. The
explanation of the cause of the outflow also seems unconvincing to us, for it is associated with the failure of
the ocean floor during an earthquake. We think that the more convincing explanation of these phenomenais
the following: when approaching the shore, the speed of the tsunami wave slows down to a certain depth*,
after which it accelerates and thus the second wave lags behind the first. Prior to the approach of the second
wave, the first wave has time to move away from the shore (outflow) and strike the second wave under arm,
reducing its acceleration, in consequence of which its amplitude rises sharply.

Conclusion

Thisarticle offersaqualitatively new approach to the problems of nonlinear surface gravity wavesin general
and to tsunami waves in particular.We understand that experts using traditional methods may reject it, so as
it does not simplify, but rather complicates the solution of the problem. The complication liesnot only inthe
fact that we do not use the conditions of incompressibility of water and the potentiality of itsflow, aswell as
the method of static averaging, but in a greater degree by the fact that we are proposing to solve a nonlinear
differential equation with respect to the pressure for two mediaand to join these solutions on their boundary.
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