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ABSTRACT. The paper deals with one-weighted boundedness criteria for the integral transforms
generated by the strong maximal functions, multiple conjugate functions and Hilbert transforms in
grand Lebesgue spaces with respect to measurable functions. We characterize both weak and strong
type weighted inequalities. Both cases of weighted spaces differing by position of the weight function
in the norms are explored. © 2018 Bull. Georg. Natl. Acad. Sci.
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The grand Lebesgue spaces L” first appeared in the paper by T. lwaniec and C. Sbordone [1]. In this
paper the authors explored the integrability problem of Jacobian under the minimal hypothesis. The

generalized grand Lebesgue spaces L™ were introduced by E. Greco, T. lwaniec and C. Sbordone in [2],
when they studied the nonhomogeneous N -harmonic equation divA(x,Vu) = u . Inthe theory of PDE's, it

turns out that these spaces are the right spaces in which some nonlinear partial differential equations are
appropriate in view of existence and uniqueness of solutions, of their regularity properties (see e. g. [2,3]).
The study of mapping properties of integral operators of harmonic analysis in weighted grand Lebesgue
spaces was started by the paper [4], where the necessary and sufficient condition ensuring the one-weight
inequality for Hardy-Littlewood maximal functions was established. The similar problem for various type
singular integral operators and potentials were explored in [5-11].

In the present paper we explore the boundedness problems for integral transforms defined on product
spaces in the more general grand Lebesgue spaces introduced, in the unweighted case, by C. Capone, M.
R. Formica and R. Giova [12]. Recently the in [13] the weighted boundedness criteria for Cauchy singular
integral operator in weighted grand Lebesgue spaces with respect to measurable function were established.
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Let Q be a bounded set in R". Let now W be a weight, i. e. almost everywhere positive integrable
function on the set Q. Let 1< p<oo and & be a positive, measurable bounded function on (0, p—1),
5(0+)=0.

In the sequel we introduce two type weighted grand Lebesgue spaces with respect to measurable

functions: in the first case the weight in the definition of the norm participates as a function generated a

measure and the other case, when it plays a role of multiplier.
By L (Q) we denote the set of all measurable functions on Q for which

1/ p-¢
1% lp20) = Oitigl(&(g))(bﬂ f(x)* w(x)dx] <,

In the following we will discuss also the generalized weighted grand Lebesgue space E\i/)ﬁ (Q) defined

1
p
[l = 508 { DI J

Both these spaces are non-reflexive, non-separable and non-rearrangement invariant Banach function

by the norm

spaces. In the contrasts to the classical Lebesgue spaces with weights the spaces L°*’ and [vpv)'g are

different, non-reducible to each other.
For arbitrary Borel sets e e R" we denote

we = _[ w(x)dx .
e
Together with LP-° (Q) we are interested in the weak grand Lebesgue spaces with respect to the

measurable functions WL?** (Q) , which we define by the quasi-norm

[ £l =sup sup ( (¢ )W{XeQZ|f(X)|>ﬂ,})é.

A>0 0<A<p-1
Itis clear that L? > WLP
In the sequel we will need also the definition of the Muckechoupt type weights. Let J be the set of all

rectangles | = R" with the edges parallel to the coordinate axis.
For p, 1<p<w, by A (3) we denote the set of all weights for which

p-1
1 p
sup|J|!w(x [lJljwl J < +00,

where the least upper bound is taken with respect all J clJ. By |J| is denoted the volume of J .

Our aim is to treat the following integral operators:
— 1
M3 f (x) :sup—f f(y)dy
J
_ strong maximal function,

M= [FTT 2 (k) Y= ().

_ multiple Hilbert transform and

f(x):jf(x1+sl,x2+sz,...,xn+sn)1i[ctgs—2‘ds, S=(Sp-5,),

™
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_ multiple conjugate function defined for the functions, 27 -periodic with respect to each variable.

Now we are ready to formulate the main results.
Theorem 1. Let 1< p <oo. Then the following statements are equivalent:

i) M7 is bounded in LP (3)

ii) M3 is bounded from 177 (J) to WL (),

iii) H, is bounded in L”*(3J),

iv) H, is bounded from L2 (J) to WLp* (J),

V) we A (3)

Theorem 2. Let 1< p <oo. The following statements are valid:

i) f isbounded in L7 (T"),

ii) f is bounded from L (T") to WL (T"),

iy we A (T").

Theorem 3. Let 1< p<oo and w” e A, (3) .Then M3 aswell as H, are bounded in L (3)
Theorem 4. Let 1< p<oo and W” € A (T"). Then the operator f — f is bounded in L ().

The sufficience parts of above cited theorems follow from the following general assertion.
Theorem 5. Let 1< p <oo. Suppose that a sublinear operator T is bounded in L (1< p <oo) for

arbitrary we A . Then T is bounded in L”¢ for arbitrary functions & by the condition from the
definition of L.

The proof of Theorem 5 is based on the Calderon-Zygmund interpolation theorem [14] and the openess
property of A, condition.

In the following paper we intend to give several applications of aforementioned statements to the
approximation by trigonometric polynomials of periodic functions of several variables.
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