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ABSTRACT. We discuss a natural problem concerned with equilibrium configurations of Coulomb
potential of three positive point charges constrained to a system of nested circles in the plane. After
describing our approach in general setting, several concrete problems of such type are studied in detail.
First, we consider a system of three concentric circles each of which contains exactly one charge, and
give a complete description of configurations, which can serve as equilibria of three positive charges.
Next, we give explicit formulae for the sought charges and obtain a geometric characterization of those
configurations, which can serve as stable equilibria of three positive charges. Moreover, we obtain simi-
lar results in the case of three nested circles, which are not necessarily concentric and describe the
topology of the set of equilibrium configurations. Several related problems and conjectures are also
presented. © 2015 Bull. Georg. Natl. Acad. Sci.
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1. Stable configurations of point charges with Coulomb interaction subject to certain constraints were
studied in many settings (see, e.g., [1-3]).  This often reduces to investigation of critical points of Coulomb
potential restricted to a given subset. Calculating the coordinates and establishing the topological type of
those critical points were recognized as an important and difficult problem [1].

A new direction of research was suggested in [4-5], which led to a number of interesting results. Several
developments in this direction were presented in [6-8]. The main novelty of the approach developed in [4-5]
is that it focuses on the following problem, which may be thought of as the inverse problem of electrostatics
(IPES). To describe it more precisely, let us denote by EQ(P) the Coulomb energy of collection of n point
charges Q=(q1,...,qn) placed at n-tuple of points P = (P1,..., Pn). Each pair (Q, P) will be called a configuration of
charges and denoted Q/P.  The general problem we are interested in can be formulated as follows.

(IPES) For a finite configuration P = (P1,..., Pn) of points in a fixed subset X can one find collection of non-
zero real numbers Q=(q1,...,qn), interpreted as values of point charges placed at the points Pi,  such that the
given configuration be a critical point of Coulomb potential EQ restricted to X?

If such charges exist they are called stationary charges for (configuration) P in X. If P is  local minimum
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of EQ, then it can be considered to be equilibrium configuration for EQ and will be called an equilibrium of
Q/P. Any such configuration will be called a Coulomb equilibrium in X. In such a case, a collection of
stationary charges Q will be called a Coulomb stabilizer of P.

These concepts and definitions substantially depend on the chosen subset X. Some choices of X are
related to classical mathematical models and problems of electrostatics. For example, if X is a simple (non-self-
intersecting) smooth closed curve (contour) it can be considered as a useful mathematical model of a thin
conducting loop. Many natural and interesting problems arise if one takes conductor X to be a smooth
submanifold of Euclidean space. A natural class of such problems has been discussed in [5] in the setting of
equilibria of quadratically constrained point charges. The IPES becomes very complicated if the number of
charges is big and we do not possess reasonable results in the general case. However, IPES seems to deserve
attention even in the case of few charges since the results and considerations in [6], [7] show that non-trivial
and interesting issues arise already for three point charges on a closed curve and four point charges at the
vertices of a quadrilateral linkage.

In the present paper, we generalize some results of [6], [7] by investigating the equilibrium configurations
of three point charges placed on three disjoint circles. Similar situations have already been considered in the
contexts of celestial mechanics and theory of planar vortices  [2], [9]. In this context, it is especially interesting
to consider equilibria which are in a certain sense stable. A relevant notion of stability of Coulomb equilibrium
arises if one requires that the Coulomb potential of stationary charges has a local minimum at this configuration.
In the sequel such configurations will be called stable Coulomb equilibria. For example, it is easy to verify
that the three equal charges at the vertices of regular triangle in the unit circle T form a stable configuration
on T. A bunch of results on stable equilibria of point charges can be found in [8].

We generalize the setting accepted in [5], [6] by considering the case of three charges on three disjoint
circles A, B, C in the plane. As usual such a triple is called nested if C‚  B   A. In particular, any three
concentric circles yield a nested triple. Our first main result (Theorem 1) gives a complete description of
Coulomb equilibria and stable Coulomb equilibria in the case of three concentric circles. This result relies on
the study of three point charges on the unit circle T =  D performed in [5]. Here D is the unit disc and we will
always assume that A =  D and the two other circles lie inside D. We also obtain a description of Coulomb
equilibria for three charges on three non-concentric nested circles (Theorem 2) and characterize those
configurations which can serve as stable equilibria of three positive charges. It should be noted that equilibria
of three charges on a convex curve have been studied in [6] and we make substantial use of some constructions
of [6].

We also present some results concerned with the Morse theory of Coulomb potential (Theorem 3) and the
topological structure of the set of all equilibrium configurations of three positive charges on three nested
circles (Theorem 4). In conclusion, we present some remarks and conjectures concerned with possible
generalizations of our results.

2. We begin by describing the setting of [5] in the form adjusted to our purposes. For simplicity, we only
consider charges of the same sign. Extensions to the cases, where some of the charges may have different
signs, are straightforward and are omitted for the sake of brevity. So in the sequel we always assume that all
charges are non-zero and positive. Recall that the Coulomb energy of a system of point charges
Q=(q1 ,..., qn) placed at the points P1,... , Pn in a subset X of the plane or three-dimensional (3d) Euclidean space
(up to a constant multiple which we omit as irrelevant for our considerations) is defined as
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where dij is the distance between points Pi and Pj. As is well known, the resulting force acting on qi in position
Pi (the gradient QE  of QE  at the point Pi) is equal to
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   is the electrostatic force (under our

assumption it is repelling) acting on qi at Pi due to its interaction with qj at Pj.
If charges Q=(q1, ... , qn) placed at P1, ... , Pn  stay in rest in X then we say that configuration P = (P1, ... ,Pn)

is a EQ-equilibrium or Coulomb equilibrium for the collection of charges Q, which is equivalent to requiring
that P is a constrained critical point of EQ. In such a case we say that collection of charges Q is stationary for
P. Such configurations will be called Coulomb equilibria in X. Our main aim is to investigate and geometrically
characterize the Coulomb equilibria in the case, where the conductor X consists of three nested circles and
the number of charges equals to three. We proceed by discussing the latter setting in some detail.

3. Consider a conductor consisting of three disjoint nested circles A, B, C introduced above. We are going
to consider three point charges p, q, r and assume that each of the three circles contains exactly one of the
charges in the given order. The configuration space Z3(A,B,C) defined as the set of all positions of such
triples is naturally homeomorphic to the three-torus T3.

We are now ready to formulate and prove the first main result of this note. Assume that A, B, C are
concentric with the center at the origin of the plane and radii a>b>c. Let us say that a system of three points
on these circles is non-degenerate if there is no diameter of the outer circle containing exactly two of the
given points. Such a triple of points is called balanced if no closed half-plane contains all of them.

Theorem 1. Any non-degenerate triple of points on three concentric circles is a Coulomb equilibrium of
non-zero point charges. In this case the stationary charges are uniquely defined up to multiplication by a
non-zero real number and can be expressed by explicit formulae. A non-degenerate triple of points is a stable
Coulomb equilibrium if and only if it is balanced.

Proof of Theorem 1. The proof is based on the explicit formulae for the stationary charges similar to those
given in [6] and [8]. Denote by q1, q2, q3 the sought stationary charges. Following the general strategy of [5]
we aim at obtaining a system of linear equations for q1, q2, q3. To this end we write down the analytic
expression of the fact that each point is in equilibrium for this system of charges. By Lagrange rule, at an
equilibrium the resultant force should be orthogonal to the tangent vector Ti to the corresponding circle at
each point Pi, which gives three relations: (Fi, Ti) = 0. We consider these relations as a system of three linear
equations for three variables qj and examine its matrix. Since
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where i ip OP


   and | || |ij i jd p p  , one easily verifies that the matrix of this system has the form:
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Thus for the sought charges we get a system of linear equations
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It is now easy to see that Det A=0. Therefore this system has nontrivial solutions. Moreover, rank A = 2 if
and only if there exists a pair of polar angles such that i j  . It follows that for any non-degenerate triple
the rank of this matrix is two, so stationary charges are defined up to a constant multiple. It is also easy to see
that condition that rank A = 1 is equivalent to the condition rank A = 0, which happens if and only if all three
polar angles are equal.

By examining the signs of the above expressions in terms of the introduced angles one easily verifies that
the three critical charges are positive if and only if the origin (centre of the circles) is inside the triangle
 P1P2P3, which exactly means that the triple is balanced. To establish stability one can use the general
formula on the index of a constrained critical point given in [10]. The coefficients of the bordered Hessian of
EQ can be found by a straightforward computation, which is rather long and therefore omitted. Substituting
the above values of stationary charges, calculating the signs of the principal minors of the bordered Hessian
and referring to the main result of [10], one verifies that the Hessian of the restriction EQ is positive definite for
balanced non-degenerate triples, which completes the proof.

In the non-concentric case, it is easy to find non-degenerate triples for which there do not exist non-trivial
stationary charges. In fact, in this case the description of Coulomb equilibria is more delicate and interesting.
Let us say that a triple of points from X(A,B,C) is coherent if the normals to the corresponding circles at these
points are concurrent, i.e., have a common point. This concept is similar to that of the tripod introduced in [6]
in the case of three charges on a convex curve. It turns out that one can use a geometric argument based on
Ceva’s theorem in a way analogous to the proof of Theorem 3 in [6] and verify that coherence yields a criterion
for the existence of stationary charges. In this way one gets an analog of Theorem 1 in non-concentric case.
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Theorem 2. Any coherent triple of points on three nested non-concentric circles is a Coulomb equilibrium
of non-zero point charges. If the centers of circles A, B, C do not lie on the same straight line, the stationary
charges are uniquely defined up to multiplication by a non-zero real number and can be expressed by explicit
formulae. In the latter case a coherent non-degenerate triple of points is a stable Coulomb equilibrium if and
only if the intersection point of the three normals lies inside the triangle defined by the triple.

The proof is similar to that of Theorem 1 and therefore omitted. We only add that in this case the stationary
charges can also be calculated by explicit formulae involving only geometric characteristics of the given
configuration. Namely, using some elementary trigonometry one finds that, for a coherent triple, the stationary
charges exist and are given by the formulae

22 2
31 312 1 21 2

1 2 32 2 2
12 1 23 2 32 3

sinsin sin, ,
sin sin sin

d bd b d bq q q
a a a a a a

     ,

where ai, bi are the angles between the i-th inner normal and two adjacent sides of triangle P1P2P3. All
remaining statements of Theorem 2 can be proved by analyzing the signs of these expressions. Moreover,
using standard analytic geometry one can rewrite the coherence conditions as an explicit algebraic equation
on the Cartesian coordinates of the three points. The latter equation appears useful for proving the results on
the topology of coherent triples given in Section 5.

4. By a way of analogy with some papers on the relative equilibria of planar vortices (see, e.g., [9]) one may
wish to investigate the shapes of possible equilibria of the three charges in our setting. This means that we
should identify those triples of points which form congruent triangles with the same orientation, i.e. which
can be transformed into each other by an orientation preserving isometry of the plane. It is then natural to
introduce the moduli space (or shape space) M3(A,B,C) of such configurations as the factor of the configuration
space Z3(A,B,C) over the group of orientation preserving isometries of the plane. It turns out that the
topology of moduli space depends on the mutual location of circles A, B, C.

Proposition 1. For concentric circles, the moduli space is homeomorpic to two-torus T2. For three non-
concentric circles the moduli space is homeomorphic to T3.

In other words, in non-concentric case there is no pair of congruent triangles in Z3(A,B,C) having the
same orientation. In the concentric case, there is a natural diagonal action of T on Z3(A,B,C) defined by
rotating all three points by the same angle T  . It is clear that the factor-space of this action is homeomorphic
to T2. The Coulomb potential EQ is invariant with respect to the natural diagonal action of T. Thus, for any
triple of nested circles, EQ defines a function on the moduli space M3(A,B,C).

Theorem 3. For any triple of nested circles and triple of positive charges, Coulomb potential EQ is a Morse
function on the moduli space M3(A,B,C).

This follows from the exact formulae for the Hessian of EQ mentioned in the above proofs.
Proposition 2. For three concentric circles, Coulomb potential is a Morse function. For an open set of

triples (a,b,c), Coulomb potential is an exact Morse function, i.e. has exactly 4 critical points.
Proposition 3. For three non-concentric nested circles, Coulomb potential has not less than 8 critical

points on M3(A,B,C). For an open set of triples (a,b,c), Coulomb potential is an exact Morse function, i.e. has
exactly 8 critical points, only one of which is a minimum.

Both corollaries follow from general statements of Morse theory. It is instructive to consider the case,
where all charges are equal. It is easy to identify all critical configurations in this case. These results can be
considered as certain analogs of Morse theory for relative equilibria of planar vortices developed in [9].

5.  Having in mind applications to Coulomb control of constrained variable charges in the spirit of [6] one



48 Grigori Giorgadze and Giorgi Khimshiashvili

Bull. Georg. Natl. Acad. Sci., vol. 9, no. 3, 2015

may wish to investigate the topological structure of Coulomb equilibria in our setting. An obvious necessary
condition for the existence of complete Coulomb control in the sense of [6] is the connectedness of the set of
Coulomb equilibria. This suggests that one should try to obtain some  information on the topology of this set.
Denote by E(A,B,C) the set of all Coulomb equilibria of three point charges on three nested circles A, B, C.

Theorem 4. For a triple of concentric circles A, B, C, the set E(A,B,C) of Coulomb triples is connected.
To prove this notice first that the complement of Coulomb triples in M3(A,B,C) is contained in the union of
two simple loops in T2 intersecting at two points. More precisely, this complement consists exactly of those
triples of points where exactly two of the points belong to the same diameter of A. Fixing a point on A and
considering the polar angles φ ,   of the two remaining points as the coordinates on M3(A,B,C) = T2 we
conclude that this complement consists of the points where φ  =   or φ  =    +  , except the two points
where φ  = 0 or φ  =  . Indeed, in the latter two configurations all three points belong to the same (horizontal)
diameter of A and such configurations are Coulomb equilibria. Thus, the set E(A,B,C) consists of two simple
loops intersecting at two points with the latter two points removed. It is now easy to see that this set is
connected.

In fact, given two points in E(A,B,C) one can explicitly describe a path in E(A,B,C) connecting these two
points. Moreover, it is now clear that the set E(A,B,C) is homotopic to the union of two circles with two common
points. In other words, for concentric circles we have quite detailed description of the topology of Coulomb
triples. Moreover, our considerations can be used to show that the set of stable Coulomb triples is not connected.

For non-concentric nested circles, an explicit description of E (A,B,C) in terms of polar angles becomes rather
complicated and we cannot prove that this set is connected in general. However if the three centers of circles A,
B, C lie on the same line, an easy modification of the above reasoning shows that E(A,B,C) is connected. Our
conjecture is that the set of Coulomb triples is connected for any triple of nested circles.

These results and observations suggest that it should be possible to describe an explicit algorithm for
Coulomb control of Coulomb triples in the spirit of [6]. However, we do not have explicit formulae for the values
of charges realizing a path connecting two Coulomb triples.

6. In conclusion, we mention some possible generalizations and research perspectives. The most obvious
generalization arises if one considers Coulomb equilibria of  N> 3 point charges, where each charge is confined
to one of N nested circles. There is good evidence that, for odd N and concentric circles, one has an analog of
Theorem 1. For even N, situation is much more complicated as follows from the results on equilibria of four point
charges on a fixed circle presented in [7]. However, we believe that generically Coulomb potential is a Morse
function for any system of nested circles. It would be interesting to describe configurations corresponding to
all critical point of Coulomb potential and give explicit formulae for their Morse indices in geometric terms.

Another natural possibility is to study Coulomb equilibria on other systems of nested closed curves. As a
first step one could consider the case of three nested ellipses. It is very likely that an analog of Theorem 2 is true
in this case.

Finally, for establishing the existence of complete Coulomb control of equilibria in our setting, it is important
to know that each balanced triple yields the global minimum of Coulomb potential of stationary charges. Using
the formulae given in the proof of Theorem 1, one can show that this is true for concentric circles but more
general situations remain practically unexplored.
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statiaSi ganxilulia bunebrivi Sebrunebuli amocana sibrtyeze sam aragadamkveT
wrewirze mdebare dadebiTi wertilovani muxtebis wonasworuli mdgomareobebis Sesaxeb
kulonur potencialur velSi. amocana dasmulia zogad SemTxvevaSi da detalurad
Seswavlilia ramdenime konkretuli SemTxveva.  pirvel rigSi, ganxilulia sami koncentruli
wrewirisagan Sedgenili sistema, TiToeulze moTavsebulia erTi dadebiTi wertilovani
muxti da aRwerilia  konfiguraciebi, romlebic arian am sistemis wonasworuli
mdgomareobebi. moyvanilia analizuri gamosaxuleba aseTi mdgomareobebisaTvis da
miRebulia  mdgradi konfiguraciebis geometriuli daxasiaTebasami dadebiTi muxtisaTvis.
garda amisa, aRwerilia erTmaneTSi Cadgmuli araaucileblad koncentrul
wrewirebzemdebare wertilovani muxtebis wonasworuli mdgomareobebis topologia.
ganxilulia agreTve amocanis momijnave problemebi.
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