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ABSTRACT. The superfluid *He phases in the presence of uniaxially deformed aerogel are under an
active investigation. The most valuable information on the properties of superfluid phases of *He is
contained in the time-averaged and rapidly time-oscillating contributions to the dipole-dipole potential. In
globally stretched aerogel the behavior of the Polar and ABMU(1)LIM models of superfluid *He are
compared. In the time-averaged approximation these states look similar and apparently cannot be easily
discriminated in the experiments exploring the pulsed NMR spin dynamics. On the other hand, our
theoretical analysis of the spectrum of high-frequency spin oscillations superimposed on the time-averaged
spin dynamics shows the pronounced difference between the behavior of the Polar and ABMU(1)LIM
states. © 2015 Bull. Georg. Natl. Acad. Sci.
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The behaviour of the superfluid *He in presence of uniaxially deformed aerogel is under the active inves-
tigation. Of a special interest is the possibility of the appearance of the Polar phase, which is not found among
the stable bulk superfluid states.

In Ref. [1] it was argued that the Polar phase should be accommodated by an axially stretched aerogel in
anarrow temperature stripe in the immediate vicinity of the transition to the superfluid state.

Supposedly the presence of the Polar phase has been found in Ref. [2] in the pulsed NMR regime, where
the dipole shift of the NMR frequency from the Larmor value @, = gH was detected. On the other hand, it
was argued that alternatively the same pulsed NMR data can be attributed to the ABM phase in axially
stretched aerogel described by Volovik U(1)LIM model [3]. The firm discrimination between mentioned pos-
sibilities is obscured by the lack of reliable information about the Leggett dipole frequencies Q2 , and () , of
the Polar and ABM phases in “nematically ordered” aerogel used in Ref. [2].

In what follows our main concern will be to search for the possibilities to discriminate between the Polar
and ABMU(1)LIM phases. We shall address to the case of a strong magnetic field (o, >> Q) where the
dipole-dipole (spin-orbital) potential of considered states can be represented as the sums of the time-aver-
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aged (Van der Pol) and rapidly oscillating parts. It can be shown that in the Van der Pol approximation the
results given for the dipole frequency shift (in the pulsed NMR regime) for the Polar and ABMU(1)LIM states
are reproduced. In addition it is easy to show that the stability criterion of the coherent spin dynamics are
identical for the Polar and ABMU(1)LIM states. This means that in the time-averaged approximation the firm
discrimination between the two states is hardly possible. Finally we are left with the hope to find out the
sufficiently pronounced difference between the rapidly time-oscillating parts which could discriminated
between the Polar and ABMU(1)LIM states.

Analysis of the Rapidly Time-Oscillating Parts of the Polar and ABMU(1)LIM States

A. In order torealize the attempts to compare the rapidly oscillating parts of the dipole-dipole potentials of the
Polar and ABMU(1)LIM states we are going to consider first the ABM phase in the presence of an axially
stretched aerogel environment. Here we refer to the results obtained in Ref. [4]. According to this model the

dipole-dipole potential is given as

s Z‘%Z(QA/g)z(cz'i)z» H=Hz, @
where
d=R(a,p,y)d,, (6?0 =5‘)a @)
f=(fcos<l>, +ﬁsin®,)sini+écosl.

According to ABMU(1)LIM model the orbital / —axis is confined to (f, 17) -plane. In keeping the magnetic
fieldin (5, ¢ ) -plane, being inclined by an angle 6 with respect to aerogel global deformation axisf = f xn,
it is concluded that

£-E=cosh, |[P-E=0, |2-&=sinod, o)
.?2'7’],\:0, J,}'T’],\:l, 2~ﬁ=0’
and
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According to Eq. (4) it is found that
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In what follows the ABMU(1)LIM model will be adopted which is characterized by the spatial averages
. 1 .
<s1n2d),>:<cos2d),>:5, (sin2®,)=0. ©6)
After having performed these averaging it is found that
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After some trigonometry it is concluded that

f,=-1/8 {2sin2 B(1+cos2y)+ [—1+3cos2 B+1/2 (1+cos B) cos2(a +y)+
+1/2(1—cos B) cos 2(c — y)—sin? B(cos 2a + 3 cos 2;/)]sin2 0+ . ®)
+sin B[ 2cos Bcos o + (1 +cos B)cos (e + 2y )— (1 - cos )cos(a — 27 )]sin 26}

According to the Leggett spin-dynamics at S =S, = y H /g the combination @ +y = @ is a slow vari-
able and in the strong magnetic field case (w, = gH >> Q) ) the spin-orbital function f, can be decom-

posed as
fA:J}A+fA(t)’ 9
where in the time-averaged (Van der Pol) approximation
- 1 .2 2 1 2 .2
fA(ﬂ,d))z Y 2sin” B +|—1+3cos” B +5(1 +cosﬂ) cos2® [sin” 6 (10)
and
fa(0)=

=-1/8 {2sin2 Bcos2y + [1/2(1 —cos )’ cos 2(a — y)—sin? B(cos 2a + 3 cos 2;/)]sin2 0+ (11
+sin B[ 2cos B cos a + (1 + cos 8)cos(ar + 2y ) — (1 - cos B)cos (o — 2y )]sin 26}

The stationary value ® = ® , minimizes U (B, ). This is achieved by maximizing f y (ﬂ,CI)) and gives
@, =(7/2,37/2). In this way it is established that

UMB,®,)=1/44(Q, /g)2{1/2sin2 B —1/4[3/2+cos/3 —5/2cos’ /3]sin2 9}. (12)
In order to calculate the dipole shift d @(f) from the Larmor value we use an equation
U5 (B, ®,,)

Sw(f)=-1/8 dcos B

(13)

from which it is found that

So(B)=1/2(Q /2, ) [ cos p+1/4(1-5cos B)sin’ 0 ]. (14)

It will be shown below that the corresponding answer for the Polar phase is reproduced from Eq.(14) by

substituting Q, —> V20 » (see Ref[2]).

One more information for the ABMU(1)LIM model in the limits of Van der Pol approximation is the stability
criterion (the concavity of U'"(B,®,,) with respect to cos 8 ) according to which

U (B.0,)

d(cos B)

Now we pass to explore the frequency spectrum of the rapid spin - oscillations & S(¢) . This spectrum is

>0 = cos’O<1/5. (15)

to be constructed in using the amplitudes U, (o) of the time-oscillating part f () (see Eq. (11)). In particular
the spectrum of the longitudinal spin-oscillations & S,(¢) is found according the prescription (in what
follows 6 §(t) will be measured in the unitsof S=yH /g ):

§5.(0=¢[U @) +Ug(@)], &~(Q,/w,), (16)

of of
U, =] da[a—g"] . Ug=] da[a—é;‘] (17)
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In order to realize the prescriptions given in Eqs (16, 17) we have to use (o, ®@) representation:
f1(a, @) =-1/8{ 2sin’ B cos(2a — 2®) +
+[ 1/2(1-cos B)’ cos(4a —2®)—sin’ f(cos 2a +3cos(2x —2@))} sin” 0 + (18)
+sinﬂ[ 2cos Beosa +(1+ cos B)cos(a —2®)—(1-cos B) cos (3a —Zd))}sinze} .
Inusing Eq. (18), from Eqs (16, 17) it is found that
5S.()=-1/8(Q, /o, )2 {[ sin B(1+3cos 3)sin 20| cos w, ¢ —[ sin” Bsin’ 9:|COS 20,t+ )
[1/3sin B(1-cos B)sin20]cos 3w, —[ 1/4(1-cos B)*sin’ 9} cos 4(0Lt} .

B. Now we turn to the analysis of the behaviour of the Polar phase in the aim of comparing it with the
properties of the ABMU(1)LIM model. The starting point is the dipole-dipole potential of the Polar phase

1 A2 .
Ug”:Ez,,(QP/g)z(d.U) , H=Hs3, 20)
where (U, =0,U, =-sin6, U_ =cos0) and the spin-orbital function

fo=(d-0) =(~d, sin0 +d_cos6) =

=1/4{ 2sin2[3(l+c052;/)+[—1+3cosz/3—1/2(1+cos[3)2 cos2(a+y)—

~1/2(1-cos B) cos2(a —y)+sin® B (cos2a —3cos2y)]sin2 0+ e
+sin B[ 2co0s Bsina +(1+cos B)sin (& +2y) —(1-cos B)sin (a -2y ) ]sin 26}
In decomposing f; as
o= Fo+ 1p(®), @)
it is found that
T, =1/4{2sin’ B+[~1+3cos’ B—1/2(1+cos B)’ cos 2 |sin’ 0 23)
and
J»=1/4{2sin® Beos2y +| ~1/2(1-cos B)’ cos2(a ~y)+sin’ B (cos 20 ~3cos 27 ) [sin” 0+ o

+sinﬂ[ 2cos Bsina +(1+cos f)sin (o +2y ) —(1—cos )sin(a —27)}sin29}

According to Eq. (23) it can be shown that for the Polar phase in the Van der Pol approximation the stationary

value of ® = @, =(0,7), the dipole shift from the Larmor value o, is

so(B)=(Q} /20, ) [ cos B+1/4(1-5cos B)sin’ 0 |, (25)

and the criterion of the coherent spin dynamics stability is given as cos” 6 <1/5.

Now we are going to explore the frequency spectrum of the rapid spin-oscillations. As in the case of the
ABMU(1)LIM model this task is to be realized in using for the longitudinal spin-oscillations 6 S_(¢) the
prescription given in Eqs (16, 17). In order to perform this procedure it will be needed to use (o, @) represen-
tation of f ». From Eq. (24) it follows that for the Polar phase
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fr(a,®)=1/4{2sin’ B cos(2a - 2®) +[—1 /2(1—cos B)’ cos(4a —2d)+
+sin’ B(cos 2a —3cos(2a —20)) |sin’ 0 + (26)
+sin B[ 2cos Bsina —(1+cos B)sin (@ —2®) —(1-cos B)sin (3a — 20) ]sin 26}

After having used Eq. (26), from Egs (16, 17) itis found that for the Polar phase

58.(t)=1/4(Q,/a,) {[ sin B(1+3cos B)sin 20]sin a,¢ +[ sin® Bsin’ O | cos 2e,1 -
@7
—[1/3sin B(1-cos B)sin 20 |sin3w,t—1/4 [(1 —cos 3)° sin’ 6’} cos 4a)Lt} .
This answer is to be compared with Eq. (19) appropriate to ABMU(1)LIM model. The comparison shows
that the structure of the frequency spectra of 6 S_(¢) for the Polar and ABMU(1)LIM states are sufficiently

different in order to discriminate experimentally between these two superfluid states in pulsed NMR regime.
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