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ABSTRACT. Study of the spatial-temporal propagation of the air flow generated by the action of high-
power phenomenon has great theoretical and practical value, especially for the mountainous territories
because even the low hills slow down the velocity of flow motion and change its direction, sometimes even
to the opposite direction. In the present paper the air flow  generated by high-power pulse and its spatial-
temporal propagation in the atmosphere above the uniform and non-uniform terrains are investigated.
Some results of theoretical and numerical investigations are given. Received results can be useful in
military and mining operations, especially in the process of open career works in populated places or
near to them. © 2015 Bull. Georg. Natl. Acad. Sci.
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 The main characteristic features of explosion are: pressure drop, formation of explosive cloud and a blast
wave, expanding with the lapse of time [1,2]. Study of real explosions is rather expensive, and theoretical
methods or numerical modeling represent the cheapest and more reliable approaches, though they require
experimental or some modern knowledge in the adjacent areas of science. For instance, numerical modeling of
explosion, requires experimental data, very skilful numerical schemes and detailed theoretical knowledge of
explosive phenomena [3].

There are many interesting numerical studies devoted to the blast wave transportation and its impact on
environment [3-6]. Over the last two decades considerable attention received terrorist explosions [7-9].
Recently, on the basis of modern computer technology it became possible to perform numerical simulations
and to carry out successful numerical analysis of explosions  [5, 10,11]. There are numerous works devoted
to investigation of the craters produced by explosions on the soil surface [3] and the blast stress waves
induced from the large scale underground explosion [5].

The main goal of this work is to study “perturbed” (as a result of high power explosions) airflow advective
propagation in the atmosphere for the small time t taking into account the influence of topogragraphy. As
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the process of pressure drop penetration in the geopotential field is analogous to the problem of gas
nonstationary diffusion in the atmosphere [3, 5, 12, 13], we assume that at the moment t = 0 in the origin of
coordinate system there is a source of a high power perturbed flow with power Q. The pressure drop, caused
by explosion propagates into every direction and the flow velocity at the distance r can be defined by the
following formula [14]:
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To solve the problem we use a system of hydro-thermodynamic equations in the form of Gromeko-Lambda
and the following integral of  Lagrange [15]:
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where   is the flow function, p  is pressure,  is air density, , p is the pressure in infinity (practically at the
remote distance r ).   From (2) we have:
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Taking into account that the second term in the right side of the equation (3) is approximately 103 times
smaller than the first one [14] we get:
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Theoretical Solution of the Problem

As the studied process proceeds in a small time interval (seconds, minutes), and the pressure mainly depends
on density, it is possible to assume the medium to be barotropic in which  a flat divergence is zero. That is why

for definition of  
t
  we can use the following vorticity equation of the barotropic medium [15]:

 0z z z D
t x y

u v  
   

  
, (5)

where 
y
u

x
v

z 






  is the z  component of vorticity,  u  and v  are velocity components along the axes ox

and oy. As in the considered case the velocity fields u and v are solenoidal, they can be described by the
following Helmholtz relations [15]:
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where   is a plane Laplacian operator. Using (6), from (5) we obtain:
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where ),(  is Jacobian. It is obvious that (7) represents Poisson equation with regards to 
t
  and
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solution of (7) in polar coordinate system ( , )r   has the following form [16]:
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where 
r
Rln  is an influence of the so called Green’s function, ),( A  is a horizontal advection,

R is maximum distance of perturbed flow penetration. Taking into account special character of the gener--
ated process [17], we can reduce Eq. (8) to
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where A is a mean value of A  inside the whole circle with radius R .
When influence of orography is taken into account then we have [17]:
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influence of the relief along the parallel and meridian, respectively. Taking into account (10) for finding  
t
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instead of (9) we get [17]:
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(11) is a Helmholtz-type equation, which has the  following solution [12,16]
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where ( )oK   is the Bessel function for imaginary argument, the so-called Macdonald’s function, which has
logarithmic singularity at point 0   and exponentially decreases when    [16]. In the frame of our
task for the sufficient approximation we can write:
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and after calculation of the integral in (14) we get:
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where 25.02ln
2
1
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C  and the value of C for certain regions are calculated individually. For this

reason we represent a mountain massif as a body with regular geometric form, for example, as a triangular
pyramid, the length, width and height of which are real magnitudes.

Results and Discussion

Now we are going to represent horizontal advections A  and 'A  in different approximations. Let us
consider the case when there is a pinpoint blasting on a plane terrain. Taking into account (1) we have
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From (16) it follows that above the plane terrain the pressure drop decreases proportionally according to
r6. Pressure drop was calculated from (16) for each value of distances r=5, 10, 20 ... 100m, for three different

values of angle   - (
3

,
4

,
6

 ) and for common experimental parameters of the task R=500 m,

r = 1,3 kg/m 3 and Q=5000 m3/s . The results of calculations presented in  Table 1 show that the values of the
pressure drop decrease with the increase of distances, and at the distance of r=100m the disturbed atmos-

pheric flow vanishes (r=100m, p = 0,02 (pa)).  Also, Table 1 shows that when 
4


    for any value of

distance the values of pressure drop are slightly greater than for the angles 
3

,
6





  . This indicates

that in case we are not taking into account the influence of orography, the disturbed atmospheric flow mainly
spreads towards  450 angle to the ground level. Also, calculations  show that the value of pressure nearby the
explosion is rather great (at r=10m, p = 1.9·104 pa), and significantly decrease according to distance (at
r=50m the value of pressure changes p = 1.2 pa). Indeed, this result is natural for the open atmosphere space
(without any obstacles) where the pressure drop is rapidly decreasing according to the distance. In order to

r(m) 
p (pa) 

6


 
4


 
3


 

5 1×106 1.2×106 1×106 

10 1.6×104 1.9×104 1.6×104 

20 257 297 257 

30 22.6 26 22.6 

40 4 4.6 4 

50 1.05 1.2 1.05 

60 0.4 0.5 0.4 

70 0.1 0.2 0.1 

100 0.02 0.03 0.02 

Table 1. Pressure drop changeability according to distance and angle of inclination above the uniform terrain
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make the question clear concerning  the pressure drop dependence upon the explosion intensity we also
made some calculations. Dependence of the pressure drop on the distance calculated for as three different
values of explosions intensity (Q=500, 5000, 50000 m3/s) are presented in Fig.1. As it was expected and as
Fig.1 shows, when Q=50000 m3/s the disturbed atmospheric flow spreads to the maximum distance from the
center of explosion r=150m.  Behavior of the other curves are almost identical.

Fig.1 illustrates rapid decrease of p  according to distance which was stipulated by free distribution of
the blast wave in the open atmosphere, deprived of any barriers.

When the perturbed air flow penetrated over the mountainous territory the calculations were performed

by formula (15). In this case 62
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Formula (17) shows if we take into considiration the influence of topography and assumption that the air
streams behavior is difference along the terrestrial meridian and parallel then the pressure drop is inversely
proportional to a squared distance. Once again for the following values of  parameters R=500 m, r =1.3 kg/m3

and Q=5000 m3/s, we calculated the values of p at the distances r=5, 10, 20 ... 300 m, for the angles

 = ( , ,
6 4 3
   ), and for different configuration of the relief (a>b; a<b; a=b). The results of such calculations

are presented in Table 2. Analysis of Table 2 shows that when a>b (mountainousness in the direction of a
terrestrial parallel is less than in the direction of a meridian) the values of p are decreasing quickly until
r=30m, and further its values are  expressed by negative numbers. This fact clearly indicates that when a>b
the main atmosphere masses are not able to overcome the barrier. They are rebounded from the obstacle and
are spreading backword for any values of angles. When a<b (when  hilliness in the direction of a terrestrial
parallel is more than in the direction of a meridian) then the values of p are considerably decreassing  until
r=30-50m, further their values are decreassing quite smoothly and the maximum distance of the disturbed flow
penetration is about 200m (when r=200m then )(2.1 pap  , and further the disturbed atmospheric flows are

Table 2. Pressure difference changeability depending on the distance and inclination angle taking into
account three deferent configurations of relief

r (m) 

p (pa) 

a>b    (a=10-3, b=10-4) a<b    (a=10-4, b=10-3) a=b    (a=10-3, b=10-3) 
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10 2·104 3·104 2·104 2·104 3·104 2·104 1·104 2·104 1·104 

20 346 391 328 473 504 420 279 295 240 

30 28 28 20 85 79 61 48 42 30 

50 -0.6 -0.7 -2.3 21 17.3 12 11 8.4 5 

100 -0.2 -0.6 -0.9 4.9 3.9 2.7 2.6 1.9 1 

150 -0.09 -0.3 -0.4 2.1 1.7 1.2 1.1 0.8 0.4 

200 -0.05 -0.2 -0.2 1.2 0.9 0.7 0.6 0.5 0.2 

300 -0.02 -0.07 -0.1 0.5 0.4 0.3 0.3 0.2 0.1 
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almost eliminated. Also, Table 2 clearly shows that the values of pressure drop till 20m are slightly more for

4
   and further air masses are spreading towards 300 angle. The latter indicates that after intial moment of

time the main atmosphere masses are accumulated there near to the 45° angle p and  reaches its maximum,
further the values of pressure increase with the reduction of the angle value. This fact is natural as the
obstacle (orography)  block the way to the flow and the pressure changes slower than at the angles of 60° or
45°. At last when a=b the values of  p are considerably decreassing  until r=20m, and the stream extends at
the angle of 45°. Further after r=30m values of p are decreassing quite smoothly, the stream extends at the
angle of 30° and the maximum distance of the disturbed flow penetration is about 150m  (when r=150m then
p=1,1(pa). The curves presented in Fig. 2 illustrate the behavior of pressure drops according to distance for
three different configurations of orography (a>b; a<b; a=b) and calculated for the parameters of the task

R=500m, =1,3 kg/m3, 
4


  . Fig. 2 shows that when a>b reduction of pressure drop proceeds very fast in

comparison with other configurations (a<b; a=b).   When a b  behaviour of the curves are almost identical
but it must be noted that reduction of pressure happens very quickly till  r=30m, further its changability has
slower character. Behaviour of the curves in Fig. 2 confirms justice of the above given arguments (Table 2).

Conclusion

Taking modern global warming into consideration it is topical to study the processes associated with the
blasts. As usual, these phenomena propagate in a little time on the relatively small territory, but their results
are important. Especially interesting is the advective propagation of harmful air masses above the mountain-
ous territories. Even lower hills slow down the velocity of flow motion and often change its direction,
sometimes even to the opposite direction. Namely such a kind of natural phenomenon is characteristic for
some regions of Georgia (Tskhinvali and Sachkhere territories), where military actions took place in 2008.
Theoretical justification of such processes, are given in this article. Received results can be useful in military
operations, mining operations,  especially during open career works in the populated areas or  near them.
Acknowledgement. The work was fulfilled by financial support of the Shota Rustaveli National Science
Foundation (Grant #GNSF 09-614_5-210).

Fig. 2. Pressure difference changeability depending on the
distance and inclination angle for three deferent
configurations of relief and advection penetration.

Fig. 1. Pressure drop changeability according to the
distance for the three different values of explosion
intensity above the uniform terrain.
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geofizika

atmosferos mZlavri SeSfoTebiT gamowveuli
wnevis vardnis gavrceleba mTagorian teritoriaze
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(warmodgenilia akademiis wevris T. WeliZis mier)

“SeSfoTebuli” haeris nakadis sivrcesa da droSi gavrcelebis Seswavlas udidesi
Teoriuli da praqtikuli mniSvneloba aqvs gansakuTrebiT mTagoriani teritoriebisTvis,
vinaidan mcire simaRlis burcobebic ki swrafad anelebs nakadis moZraobis siCqares,
ucvlis mas mimaTulebas da xSirad abrunebs sawinaaRmdego mimarTulebiTac ki. mocemul
naSromSi Seswavlilia mZlavri “SeSfoTebiT” warmoSobili haeris nakadis sivrcesa da
droSi gavrceleba, rogorc erTgvarovan aseve araerTgvarovan teritoriebze orografiis
gavlenis gaTvaliswinebiT.  mocemulia Teoriuli da ricxviTi kvlevebis zogierTi Sedegi.
miRebuli Sedegebi sasurvelia mxvedvelobaSi iqnes miRebuli saomari moqmedebebisa Tu
samTo da Ria karierebze muSaobisas, miTumetes Tu Tu aseTi samuSaoebi mimdinareobs
dasaxlebul punqtebSi an maT siaxloves.
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