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ABSTRACT. We study a randomization of the standard finite dimensional optimal control problem: we just assume
that boundary values of the trajectory are not fixed but have some probability distributions and try to minimize the
expectation of the cost. This is actually a control version of the “optimal mass transportation”. We are busy with the
existence, uniqueness and characterization of minimizers. The paper is dedicated to the 80th anniversary of Revaz
Valerianovich Gamkrelidze and is based on a joint work with Paul Lee. © 2007 Bull. Georg. Nail. Acad. Sci.
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1. Introduction

The paper is dedicated to the 80th anniversary of my teacher Revaz Valerianovich Gamkrelidze, one of the
founders of the Optimal Control Theory. Professor Gamkrelidze is the author of many bright ideas in Control Theory,
one of them is the idea of generalized controls which give a proper relaxation of the optimal control problem (see book
[1] and references therein). According to Gamkrelidze, generalized controls depend on time probability measures on
the space of control parameters. Introduction of the generalized controls makes the space of admissible controls
convex and the right-hand side of the control system depends linearly on this admissible control. Moreover, very
strong approximation results demonstrate that we do not lose any information with such a relaxation. Yet the system
remains nonlinear with respect to the state variable.

Later Revaz Valerianovich and myself developed the Chronological Calculus which systematically treats nonlinear (with
respect to the state variable) systems as linear operator equations. Yet the state space remains nonlinear in this calculus.

The next step which we perform in this note is the randomization of the state variable: a “pure” state is substi-
tuted by a probability distribution. The randomization makes the state space convex and somehow regularizes the
optimal control problem. If the relaxation of controls provides the existence of the optimal solution, the randomization
of the state leads to its uniqueness. Actually, the randomized optimal control problem belongs to the class of so-called
“mass transportation problems” (see [2]); this fact allows to use such a powerful analytic tool as Kantorovich duality
in order to achieve the uniqueness and give an appropriate description of the optimal solution.

We start from a semi-heuristic calculation in the space of volume forms in order to demonstrate the flavor of the
problem and to give an idea of what kind of solution we could expect. Then we formulate rigorous results whose
proofs can be found in [3].

2. Optimal Displacement

Let M be a smooth manifold and U be a closed subset of another manifold. We consider a standard optimal
control problem with the integral cost and fixed endpoint:
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1
min [ @, (Ot . 4 = £, (@0 ¢©) =g, q) =1, M
0

where geM ; u eU , and the Lagrangian (q,u) — ¢, (q) is smooth as well as the mapping (q,u) — f, (q), where

Ju(@ €T, M cTM . This problem induces the following “optimal displacement” problem on the space of volume

forms (i. e. positive measures with smooth densities). The state space for this new problem is the space of volume
forms, although, eventually, it can be extended to a more general class of nonnegative measures. Control parameters

are mappingsy : M —> U (say, Lipschitz mappings); we will use the symbol f, for the vector field ¢ — [y 4 (@)
Control functions are measurable bounded with respect to ¢ and Lipschitz with respect to ¢ mappings (¢, q) = u,(q) ,
t[0,1], g e M . The Lagrangian of the optimal displacement problem is:
[, u) = I%ﬂ
M

and the control system:

e = _qut Hi ()

t
where L, is the Lie derivative. Then the measure x, is the pushforward of 4, by the Fu’[ = expj Sy dr on M
0

generated by the differential equation g = f,, (¢).1i.e. 4, = Fult . (145) . The problem is to minimize

1 1
{ Kttt = jM[ ! P, OFidf}#o

for all (u,,u,) suchthat (2) is satisfied and the “endpoints™ 1, , 1, are fixed. We would like to follow the Hamiltonian

approach of the Pontryagin Maximum Principle in order to characterize possible solutions to the minimization problem
(see [1], [4] for the original coordinate treatment and [5], [6] for the intrinsic presentation). The dual space to the space
of measures is the space of scalar functions, so that the “cotangent bundle” to our state space is the direct sum of the

space of measures{x} and the space of functions {p}. The depending on control “Hamiltonian of the optimal
control problem”:

by(p.i)==<p.Lyp>~tuww)==[ pLy p=[p,u.
We integrate by parts and obtain:

bu(p:#):_[(< dp’fu >_¢u)# :J‘hu (dp)ﬂ
where h, (2)=<z, f,(q) > ¢, (q), z€T,;M | geM . Hence

def
Bp. ) = max b, (p. )= [ H(dp)p

where

def "
H(z) =maxh,(z), zeT M, €)]
ucl

is the maximized Hamiltonian of the standard optimal control problem (1).

Now find the “vertical derivative” Z—B . This is easy:
4
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oB ! 'V _ ’
<5,p >—I<dp,dde>,u——J‘pL(d;pH),u.

So, we have:

0B OB
5(p7 ,Ll) - _L(d:j'pH)/u > a = H(dp)

We see that the “Hamiltonian system” for B is actually reduced to the Hamilton-Jacobi equation

p=—H(dp) @
plus the transport equation:
A=Ligm#

a quite natural and predictable result. Now we have good candidates for the optimal displacement: the measure should
be transformed by the flow on M defined by the characteristic curves associated to the Cauchy problem for the
Hamilton-Jacobi equation (4). Recall that characteristic curves are projections to A of solutions to the Hamiltonian

system on7"A/ with the Hamiltonian function H.

3. Existence and Uniqueness of Optimal Map

Here we formulate the main existence and uniqueness result. The proof is essentially analytic and uses Kantorovich
duality (see [3] and [2]); anyway, | hope that simple calculation of the previous section explains why the result is
natural.

In fact, we deal with a more general optimal displacement problem than one considered in the previous section.

Now u, and u, are arbitrary Borel probability measures on A/ and admissible controls are Borel maps

t
y = expf Jutqynd? the problem is to minimize
0

u:M — L”([01],U) . Let Fy,

1
Fueg) = I [I Putgyluie) (q)d[]dﬂo )
MO

for all admissible controls u such that the “endpoints” x, and z; = F L (u,) are fixed.
We set

1
0

the optimal cost for the standard finite dimensional problem (1). Function c is defined on the subset of Af x A formed
by the endpoints for which there exists a minimum. We denote byﬁ the Hamiltonian vector field of the function /7
(see (3)) and by el the flow on7 "M generated by this vector field if / is smooth and H is complete. Finally,
letz: T M — M be the standard projection.

Theorem 3.1. Assume that Hamiltonian H is of class 2, the field H is complete, measures Mo, My have

compact supports and the cost function c is well-defined and Lipschitz in a neighborhood of sup p(u,)xsup p(u;).
If w, is absolutely continuous (w. r. t. the Lebesgue measure) then there exists a unique up to ji-measure zero

optimal displacement F, . Moreover, there exists a Lipschitz function a on M such that

Fy = ﬁ(ezﬁ (dqa)), 0<t<l.

Jor p,-almost all qeM .
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4. Regularity of Control Cost

In Theorem 3.1, we prove the existence and uniqueness of optimal maps under certain regularity conditions on
the cost. In this section, we give simple conditions which guarantee this regularity. Here we consider only affine with

k
respect to control systems. In other words, £, (¢) = X, (q) + Z u;X,;(q), where X, X,..., X, are fixed smooth vector
i=1

fields on the manifold A, u = (u,.....u, ) andU = R* (see [6]).
The Cauchy problem for system

k
Fu(@) =X, (@) + ) u; (X, (1) )

i=1
is correctly stated for any locally integrable vector-function #(-) and we assume, throughout this section, that system
(5) is complete, i. e. all solutions of the system are defined on the whole semi-axis [0, o).
This completeness assumption is automatically satisfied if M is a compact manifold or M is a Lie group and the
fields X; are left-invariant or if A/ is a closed submanifold of the Euclidean space and | X, (@) [<c(I+|¢ ), i =01,....k .
We need some basic notions of the geometric control theory, see [5] for detail. Fix a point ¢, in the manifold M.

Consider the endpoint map End, : L([01,R") - M defined by End, (u())=q(l), where g() is the admissible

path corresponding to the control u() and initial condition ¢(0) = g,, . It is known that the map £nd, isa smooth

mapping. The critical points of the map End, are called singular controls. Admissible paths corresponding to the
singular controls are called singular trajectories.

We also need the Hessian of the mapping £nd, at the critical point. Let £ be a Banach space which is an

everywhere dense subspace of a Hilbert space /7. Consider a mapping ®: £ — R” such that the restriction of this
map @|; to any finite dimensional subspace /" of the Banach space £ is C,. Moreover, we assume that the first and

second derivatives of all the restrictions @ |, are continuous in the Hilbert space topology on the bounded subsets
of £. In other words,

D +w)— D) = D, D(w) +%D3q>(w) +o(wl*), welw

where D @ isa linear and D?® quadratic mappings from £ to R” . Moreover, D, ® | and D.® |, continuously
depend on v in the topology of H while v is contained in a ball of E.

The Hessian Hess, ® :ker D,® — coker D, of the function @ is the restriction of D?® to the kernel of D, ®

with values considered up to the image of D,® . Hessian is a part of DV2CD which survives smooth changes of

*
variables in £ and R”. Let & be a covector in the dual space R” such that £ D,® =0, then & Hess, @ is a well-

defined real quadratic form on ker D, ® . We denote the Morse index of this quadratic form by ind(SHess, @) . Recall

that the Morse index of a quadratic form is the supremum of dimensions of the subspaces where the form is negative
definite.

Definition 4.1. A critical point v of O is called sharp if there exists a covector & #0 such that £p @ =0 and
ind(&Hess,, @) < +oo.

Needless to say, the spaces £, I/ and R” can be substituted by smooth manifolds (Banach, Hilbert and 7-
dimensional) in all this terminology.

Going back to the control system (5), let (u(-), ¢(-)) be an admissible pair for this system. We say that the control

u(?) and the path g(-) are sharp if u(-) is a sharp critical point of the mapping £nd ).
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One necessary condition for control and path to be sharp is the so-called Goh condition.
Proposition 4.2 (Goh condition). I/ ¢Hess, .y End ;o) <+%, then

<EO. X (g0) >=<EO.[X,. X ;1) >=0 i j=1L...k,0<r<]1.

1
where £(7) :P,jcf and P, :exp_ffu(,)d‘r.
t

See [5, 8] and references therein for the proof and other effective necessary and sufficient conditions of sharp-
ness.

Now turn to the optimal control problem. We assume that the Lagrangian ¢, (q) is strictly positive, strongly
convex with respect to « and satisfies standard growth conditions, i.e. for any compact K CM there exist constants
||
Pu(q)

on K. These properties guarantee smoothness of the Hamiltonian

a, b suchthat |d p|<a(p, (@)+|u))+b Vue RY, ge Kk and tends to zero as || tends to zero, uniformly

H(,q)=max .. [< EXo(@+ Y u, X, (q)>—9,(q) |-
We are now ready to state the main result of of this section.
Theorem 4.3. Assume that the system (3) does not admit sharp controls, then the set
D ={(x. End . (u()))| xe M.u e L”([0.1] B* )}
open in the product M xM . Moreover, the optimal cost(x,y)+> c(x,y) is locally Lipschitz on the set D.

5. Applications: Optimal Displacement on Sub-Riemannian Manifolds

In this section, we will apply the results in the previous sections to some sub-Riemannian manifolds. First, let us
recall some basic definitions.

Let A and A be two (possibly singular) distributions on a manifold A/, Define the distribution [A, A by
[A A= span{[v,w]|vis a section of A, wisa section of Ay
Define inductively the following distributions: [A, A'1=A? and A = [A, A¥1]. A distribution is called k-gener-

ating if A¥ =7A7 and the smallest such & is called the degree of nonholonomy. Also, the distribution is called bracket
generating if it is k-generating for some £.
If * is a bracket generating distribution, then it defines a flag of distribution by

AcAN c..cTM .
The growth vector of the distribution A at the point x is defined by (dimA,,dim Azx,.i.,dimeM ). Let

x(-) :[a,b] > M be an admissible curve, that is a Lipschitz curve almost everywhere tangent to A. The following

classical result on bracket generating distributions is the starting point of sub-Riemannian geometry.

Theorem 5.1. (Rashevskii and Chow) Given any two points x and y on the manifold M with a bracket generat-
ing distribution, there exists an admissible curve joining the two points.

Using Rashevskii-Chow Theorem, we can define the sub-Riemannian distance d. Let <,> be a fibre inner product

on the distribution A, called sub-Riemannian metric. The length of an admissible curve ¢(-) is defined in the usual

b
way: length(q(") = J.w/ < q(1),q(t) >dt . The sub-Riemannian distance d(x; y) between two points x and y is defined by

the infimum of the length of all admissible curves joining x and y. There is a quantitative version of Chow-Rashevskii
Theorem, called Ball-Box Theorem, which gives Holder continuity of the sub-Riemannian distance. See [9] for details.
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Corollary 5.2. Let d be the metric of a complete sub-Riemannian space with distribution A. Function d % s
locally Lipschitz if and only if the distribution is 2-generating.

Proof. Indeed, d %is the optimal cost of the optimal control problem for a linear with respect to control system and
quadratic with respect to control Lagrangian; this is a special case of the problem considered in the previous section.
The systems with 2-generating distributions do not admit sharp paths because these systems are not compatible with
the Goh condition. On the other hand, constant paths (points) are sharp minimizers in the case of distributions whose
nonholonomy degree is greater than 2 and the Ball-Box Theorem implies that ¢ *isnot locally Lipschitz at the diagonal
in this case.

The locally Lipschitz property of the distance d out of the diagonal is guaranteed for a much bigger class of
distributions. In particular, it is proved in [10] that a generic distribution of rank > 2 does not admit nonconstant
sharp trajectories. In the class of Carnot groups, the following estimates are valid: generic #-dimensional Carnot group

with rank & distribution does not admit nonconstant sharp trajectories if 7 < (k—1)k+1 and has nonconstant sharp

2
length minimizing trajectories if 7 > (k —1) [? T T 1] . Recall that a simply-connected Lie group endowed with a

left-invariant distribution /| is a Carnot group if the Lie algebra g is a graded nilpotent Lie algebra such that it is Lie
generated by the block with lowest grading (i.e. g=V, @V, ®..0V,, V..V;1=V,,; V.= 0ifi > k and V| Lie-

generates g).
Clearly, if the cost is locally Lipschitz out of the diagonal, then the statement of Theorem 4.1 remains valid with

the extra assumption supp(x) ~supp(v)=0.

adoyadéodd
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