Mathematics

Selected Papers of the Symposium dedicated to the 80th Birthday of Academician Revaz Gamkrelidze (Batumi, 17-21 September, 2007)

Complete Semigroups of Binary Relations whose Set of All Idempotents is a Semigroup

Yasha Diasamidze, Shota Makharadze, Nino Rokva, Ilia Diasamidze*

ABSTRACT. In this paper we investigate a complete semigroup of binary relations whose set of all idempotents is a semigroup. © 2007 Bull. Georg. Natl. Acad. Sci.

Key words: semigroup, binary relations, idempotent elements.

Let X be an arbitrary nonempty set, D be a complete X-semilattice of unions, i.e. D be some nonempty set of subsets from X which is closed with respect to the set-theoretic union of elements from D, and f be an arbitrary mapping of the set X in the set D. To each mapping f we assign a binary relation α_f on the set X which satisfies the conditions

$$\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x)).$$

The set of all such $\alpha_f(f:X\to D)$ is denoted by $B_X(D)$. As is well known, $B_X(D)$ is a subsemigroup of the semigroup B_X called a complete semigroup of binary relations defined by an X-semilattice of unions D.

Let $\alpha \in B_X(D)$, $Y \subseteq X$ and $Y\alpha = \{x \in X \mid (y, x) \in \alpha \text{ for some } y \in Y\}$; $V(D, \alpha) = \{Y\alpha \mid Y \in D\}$; $\emptyset \neq D' \subseteq D$ and $N(D, D') = \{Z \in D \mid Z \subseteq Z' \text{ for any } Z' \in D'\}$. If $N(D, D') \neq \emptyset$, then $\bigcup N(D, D') \in D$ is an exact lower bound of a set D' in D. We denote this element by $\Lambda(D, D')$. Note that if the element $\Lambda(D, D')$ exists in the semilattice D, then we write $\Lambda(D, D') \in D$.

Definition 1. Let D be an arbitrary complete X-semilattice of unions, $\alpha \in B_X$ and $Y_T^{\alpha} = \{x \in X \mid x\alpha = T\}$. If

$$V[\alpha] = \begin{cases} V(X^*, \alpha), & \text{if } \emptyset \notin D, \\ V(X^*, \alpha), & \text{if } \emptyset \in V(X^*, \alpha), \\ V(X^*, \alpha) \cup \{\emptyset\}, & \text{if } \emptyset \notin V(X^*, \alpha) \text{ and } \emptyset \in D, \end{cases}$$

then it is obvious that any binary relation α of the semigroup B_X can always be represented as

$$\alpha = \bigcup_{T \in V[\alpha]} (Y_T^{\alpha} \times T).$$

^{*} Shota Rustaveli State University, Batumi

In the sequel such a representation of a binary relation α will be called quasinormal.

Note that for a quasinormal representation of a binary relation α , not all sets Y_T^{α} may be different from an empty set. But in this representation the following conditions are always fulfilled:

a)
$$Y_T^{\alpha} \cap Y_{T'}^{\alpha} = \emptyset$$
 for any $T, T' \in D$ and $T \neq T'$;

b)
$$X = \bigcup_{T \in V[\alpha]} Y_T^{\alpha}$$
.

Definition 2. Let $t \in \widecheck{D} = \bigcup_{Z \in D} Z$ and $D_t = \{Z \in D \mid t \in Z\}$. We say that a complete X-semilattice of unions D is an

XI-semilattice if it satisfies the following two conditions: $\Lambda(D, D_t) \in D$ for any $t \in \check{D}$ and $Z = \bigcup_{t \in Z} \Lambda(D, D_t)$ for any nonempty element Z of the semilattice D.

Definition 3. We say that a complete X-semilattice of unions D is nodal if $D = \{Z_1, Z_2, \check{D}\}$ for some pairwise different subsets Z_1 , Z_2 and \check{D} of the set X which satisfy the conditions $Z_1 \cap Z_2 = \emptyset$ and $Z_1 \cup Z_2 = \check{D}$.

The following statements can be found in [1-3].

Theorem 1. Let $\emptyset \notin D$ and $|D| \ge 1$. Then the right zeros of the semigroup $B_X(D)$ are elements from $K_X(D) = \{X \times Z \mid Z \in D\}$ ([1], p. 377).

Theorem 2. Let D be an elementary X-semilattice of unions. Then the set of all idempotents of the semigroup $B_X(D)$ forms an idempotent ([2], Theorem 4, p. 3175).

Theorem 3. Let D and $I_X(D)$ be respectively a nodal X-semilattice of unions and a subsemigroup of the semigroup $B_X(D)$ generated by all idempotent elements of the semigroup $B_X(D)$. Then $I_X(D)$ is a semigroup of idempotent elements ([2], Theorem 2, p. 3208).

Theorem 4. A binary relation $\varepsilon \in B_X(D)$ is a right unit of this semigroup if and only if ε is idempotent and $D = V(D, \varepsilon)$ ([3], Theorem 2.1, p. 4281).

Theorem 5. Let D be a complete X-semilattice of unions, $t \in \check{D} = \bigcup D$ and $D_t = \{Z \in D \mid t \in Z\}$. The semigroup $B_X(D)$ has right units if and only if

- 1) $\Lambda(D, D_t \in D)$ for all $t \in \check{D}$ and
- 2) $Z' = \bigcup_{t \in Z'} \Lambda(D, D_t)$ for any nonempty Z' in D ([3], Theorem 2.6, p. 4286).

Lemma 1. Assume that the X-semilattice of unions D does not contain a three-element chain. Then the semilattice D satisfies at least one of the following conditions:

- a) $D = \{Z_1\}$ for some subset Z_1 of the set X;
- b) $D = \{Z_1, Z_2\}$ for some subsets Z_1 and Z_2 of the set X which satisfy the condition $Z_1 \subset Z_2$;
- c) $D = \{Z_1, Z_2, \check{D}\}$ is a nodal X-semilattice of unions;
- d) D is an elementary X-semilattice of unions.

Proof. Assume that the X-semilattice of unions D does not contain a three-element chain.

- a') The statements a) and b) are valid if |D| = 1 or |D| = 2.
- b') Let $|D| \ge 3$ and \check{D} be the largest element of the semilattice D. If Z and Z' are various elements of the semilattice D that are different from the element \check{D} , then, by assumption, we have $Z, Z' \in \check{D}$ and $Z \subseteq Z \cup Z' \subseteq \check{D}$.
- 1) It is obvious that if the conditions $Z \neq Z \cup Z'$ and $Z \cup Z' \neq D'$ are fulfilled, then the inclusion $Z \subseteq Z \cup Z' \subseteq \check{D}$ implies the inclusion $Z \subset Z \cup Z' \subset \check{D}$. However, the latter inclusion contradicts the assumption that the semilattice D

does not contain a three-element chain. Therefore $Z = Z \cup Z'$ or $Z \cup Z' = \check{D}$.

If $Z = Z \cup Z'$, then $Z' \subset Z$, since, by assumption, $Z \neq Z'$. Now, taking into account the inclusion $Z \subset \check{D}$, we obtain $Z' \subset Z \subset \check{D}$. However the latter inclusion also contradicts the assumption that the semilattice D does not contain a three-element chain. The obtained contradiction shows that $Z \cup Z' = \check{D}$.

We have established that $Z \cup Z' = \check{D}$ for any elements $Z, Z' \in D$.

2) Now, if $Z_1 \cap Z_2 = \emptyset$ for some elements $Z_1, Z_2 \in D$, then for any element $Z \in D \setminus \{Z_1, Z_2\}$ we have $Z_1 \cup Z = Z_1 \cup Z_2 = \check{D}$ and $Z_2 \cup Z = Z_1 \cup Z_2 = \check{D}$. From this we respectively obtain $Z_2 \subseteq Z$, $Z_1 \subseteq Z$ and $Z_1 \cup Z_2 = \check{D} \subseteq Z$. Therefore $Z = \check{D}$, since \check{D} is the largest element of the semilattice D.

Thus $D = \{Z_1, Z_2, \breve{D}\}$ is a nodal X-semilattice of unions.

The statement c) of the lemma is proved.

3) If the set-theoretic intersection of any two elements of the semilattice D is nonempty, then statement 1) immediately implies that D is an elementary X-semilattice of unions.

The statement d) of the lemma is proved.

The proof of the lemma is completed.

Note that according to Lemma 1 the diagrams of X-semilattices of unions which do not contain a three-element chain have one of the forms 1, 2, 3 or 4 shown in the Figure.

To find all idempotents of the semigroup $B_X(D)B$, we should first define by virtue of Theorem 5 all XI-subsemilattices of the semilattice D. After that we find the right units of all complete semigroups of binary relations which are defined by these XI-semilattices of unions. Combining the sets of all right units, we obtain the set of all idempotents of the considered semigroup.

It can be easily shown that only semilattices having a representation of one of the forms $D' = \{T', D'' = \{T', T''\}\}$ and $D''' = \{Z, Z', Z \cup Z'\}$, where $T, T', T'', Z, Z', Z'' \in D$, $T' \subset T''$, $Z \setminus Z' \neq \emptyset$, $Z' \setminus Z \neq \emptyset$ and $Z \cap Z' = \emptyset$ (see [4]) can be XI-subsemilattices of the X-semilattice of unions D.

The diagrams of the considered XI-semilattices of unions have one of the forms 1, 2 and 3 shown in the Fig. Quasinormal representations of the elements of the semigroups $B_X(D')$, $B_X(D'')$ and $B_X(D''')$ have respectively the form:

- a) $\alpha = X \times T$;
- b) $\beta = (Y_{T'}^{\beta} \times T') \cup (Y_{T'}^{\beta} \times T'')$ for some nonintersecting subsets $Y_{T'}^{\beta}$, $Y_{T'}^{\beta}$ of the set X which satisfy the conditions $Y_{T'}^{\beta}, Y_{T''}^{\beta} \notin \{\emptyset\}$ and $Y_{T'}^{\beta} \cup Y_{T''}^{\beta} = X$;
- c) $\delta = (Y_Z^{\mathcal{S}} \times Z) \cup (Y_{Z'}^{\mathcal{S}} \times Z') \cup (Y_{Z'}^{\mathcal{S}} \times Z'')$ for some pairwise nonintersecting subsets $Y_Z^{\mathcal{S}}$, $Y_{Z'}^{\mathcal{S}}$ and $Y_{Z''}^{\mathcal{S}}$ of the set X which satisfy the conditions $Y_Z^{\mathcal{S}}$, $Y_{Z'}^{\mathcal{S}} \notin \{\emptyset\}$ and $Y_Z^{\mathcal{S}} \cup Y_{Z'}^{\mathcal{S}} \cup Y_{Z''}^{\mathcal{S}} = X$.
 - 1) Note that $\alpha \circ \alpha = \alpha$;
 - 2) $\beta \circ \beta = \beta$ if and only if $Y_{T'}^{\beta} \supseteq T'$ and $Y_{T''}^{\beta} \cap T'' \neq \emptyset$;
 - 3) $\delta \circ \delta = \delta$ if and only if $Y_Z^{\delta} \supseteq Z$ and $Y_{Z'}^{\delta} \supseteq Z'$ ([2], Theorem 1, p. 3206).

Lemma 2. If the semilattice D satisfies the statement a) of Lemma 1, then the semigroup $B_X(D)$ is a unit semigroup.

Bull. Georg. Natl. Acad. Sci., vol. 175, no. 4, 2007

Proof. If the semilattice D satisfies the statement a) of Lemma 1, then $B_X(D) = \{X \times Z_1\}$, where Z_1 is some subset of the set X and $(X \times Z_1) \circ (X \times Z_1) = X \times Z_1$.

The lemma is proved.

Lemma 3. If the semilattice D satisfies the statement b) of Lemma 1, then the set of all idempotent elements of the semigroup $B_X(D)$ forms a subsemigroup of the semigroup $B_X(D)$.

Proof. Let α be an arbitrary element of the semigroup $B_X(D)$. Then a quasinormal representation of a binary relation α has the form

$$\alpha = (Y_{Z_1}^{\alpha} \times Z_1) \cup (Y_{Z_2}^{\alpha} \times Z_2),$$

where

$$Y_{Z_1}^\alpha,Y_{Z_2}^\alpha\subseteq X\ ,\quad Y_{Z_1}^\alpha\cap Y_{Z_2}^\alpha=\varnothing\quad\text{and}\quad Y_{Z_1}^\alpha\cup Y_{Z_2}^\alpha=X\ .$$

A relation α is idempotent if and only if it satisfies at least one of the following two conditions:

1) $\alpha = X \times Z_1$ or $\alpha' = X \times Z_2$;

2) $\beta = (Y_{Z_1}^{\beta} \times Z_1) \cup (Y_{Z_2}^{\beta} \times Z_2)$ for some subsets $Y_{Z_1}^{\beta}$ and $Y_{Z_2}^{\beta}$ of the set X which satisfy the conditions $(Y_{Z_1}^{\beta}, Y_{Z_2}^{\beta} \notin \{\emptyset\}, Y_{Z_1}^{\beta} \supseteq Z_1 \text{ and } Y_{Z_2}^{\beta} \cap Z_2 \neq \emptyset$.

Now let $\beta' = (Y_{Z_1}^{\beta'} \times Z_1) \cup (Y_{Z_2}^{\beta'} \times Z_2)$ for some subsets $Y_{Z_1}^{\delta}$ and $Y_{Z_2}^{\delta}$ of the set X which satisfy the conditions $(Y_{Z_1}^{\beta'}, Y_{Z_2}^{\beta'} \notin \{\emptyset\}, Y_{Z_1}^{\beta'} \supseteq Z_1)$ and $(Y_{Z_2}^{\beta'} \cap Z_2 \neq \emptyset)$.

We will prove that the set of all idempotent elements of the semigroup $B_X(D)$ forms a subsemigroup of the semigroup $B_X(D)$. For this we have to prove that the products $\alpha \circ \alpha'$, $\alpha \circ \beta$, $\beta \circ \alpha$ and $\beta \circ \beta'$ are idempotent elements of the semigroup $B_X(D)$.

To begin with, we observe that $\beta \circ \beta = \beta$, $\beta' \circ \beta' = \beta'$ and $V(D,\beta) = V(D,\beta') = D$. From this we conclude by virtue of Theorem 4 that the binary relations β and β' are right units of the semigroup $B_X(D)$. Hence it follows that $\alpha \circ \beta = \alpha$ and $\beta \circ \beta' = \beta$. Moreover, by virtue of Theorem 1 the binary relations α and α' are right zeros of the semigroup $B_X(D)$. Therefore $\alpha \circ \alpha' = \alpha'$ and $\beta \circ \alpha = \alpha$.

Thus $\alpha \circ \alpha' = \alpha'$, $\alpha \circ \beta = \alpha$, $\beta \circ \alpha = \alpha$ and $\beta \circ \beta' = \beta$ are idempotent elements of the semigroup $B_X(D)$, since, by assumption, $\alpha = \alpha \circ \alpha$, $\beta \circ \beta = \beta$ and $\alpha' \circ \alpha' = \alpha'$.

The lemma is proved.

Theorem 6. The set of all idempotents of the semigroup $B_X(D)$ forms a subsemigroup of this semigroup if and only if the complete X-semilattice of unions D does not contain a subsemilattice which is a three-element chain.

Proof. Note that the set of all idempotents of the semigroup $B_X(D)$ forms a subsemigroup of this semigroup and $D' = \{Z_1, Z_2, Z_3\}$ is a subsemilattice of the semilattice D such that $Z_1 \subset Z_2 \subset Z_3$. From the definition of complete semigroups of binary relations it immediately follows that $B_X(D') \subseteq B_X(D)$. Now let

$$\alpha = (Z_1 \times Z_1) \cup ((X \setminus Z_1) \times Z_3), \quad \beta = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_3).$$

Then $\alpha, \beta \in B_X(D')$ and the equalities $\alpha \circ \alpha = \alpha$, $\beta \circ \beta = \beta$ are valid, since

$$Z_1 \supseteq Z_1, (X \setminus Z_1) \cap Z_3 \neq \emptyset$$
 and $Z_2 \supseteq Z_2, (X \setminus Z_2) \cap Z_3 \neq \emptyset$.

Also,

$$\alpha \circ \beta = (Z_1 \times Z_2) \cup ((X \setminus Z_1) \times Z_3)$$
 and $(\alpha \circ \beta) \circ (\alpha \circ \beta) \neq \alpha \circ \beta$.

However the latter inequality contradicts the assumption that the set of all idempotent elements of the semigroup $B_X(D)$ forms a subsemigroup of this semigroup. The obtained contradiction shows that the X-semilattice of unions D cannot contain a three-element chain.

On the other hand, if the X-semilattice of unions D does not contain a three-element chain, then, according to Lemma 1, the diagrams of X-semilattices of unions which do not contain a three-element chain have one of forms 1, 2, 3 and 4 shown in Fig. 1. From Lemmas 2, 3 and Theorems 2, 3 it immediately follows that the set of all idempotents of the semigroup $B_X(D)$, which are defined by semilattices whose diagrams coincide at least with one of those shown in the Figure, forms a subsemigroup of the semigroup $B_X(D)$.

The theorem is proved.

მათემატიკა

აკადემიკოს რევაზ გამყრელიძის დაბადებიდან მე-80 წლისთვისადმი მიძღვნილი სიმპოზიუმის მასალები (ბათუმი, 17-21 სექტემბერი, 2007)

ბინარულ მიმართებათა სრული ნახევარჯგუფები, რომელთა ყველა იდემპოტენტების სიმრავლე ქვენახევარჯგუფებია

ი. ღიასამიძე * , შ. მაზარაძე * , ნ. როყვა * , ილ. ღიასამიძე *

ნაშრომში ბინარულ მიმართებათა სრული ნახევარჯგუფების კლასიდან გამოყოფილია ყველა ის ნახევარჯგუფები, რომელთაგან აღებული ნებისმიერი ნახევარჯგუფის ყველა იღემპოტენტური ელემენტების სიმრავლე ქმნის მოცემული ნახევარჯგუფის ქვენახევარჯგუფს.

REFERENCES

- 1. Ya. Diasamidze, Sh. Makharadze (1999), Bull. Georgian Acad. Sci., 159, 3, 376-378.
- 2. Ya. I. Diasamidze, Sh. I. Makharadze (2002), Algebra, 19. J. Math. Sci. (New York), 111, 1, 3171-3226.
- 3. Ya. I. Diasamidze (2003), J. Math. Sci. (N. Y.), 117, 4, 4271-4319.
- 4. Ya. Diasamidze, Sh. Makharadze, G. Partenadze, O. Givradze (2007), J. Math. Sci. (N. Y.), 141, 4, 1134-81.

^{*} შოთა რუსთაველის სახელმწიფო უნივერსიტეტი, ბათუმი