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ABSTRACT. In this work delay optimal control problems with non-fixed initial moment and with a mixed initial
condition are investigated. Necessary conditions of optimality are obtained. One of them, the essential novelty, is
necessary condition of optimality for the initial moment, which contains the effect of mixed initial condition. The
general results for linear time-optimal control problem are concretized. © 2007 Bull. Georg. Natl. Acad. Sci.
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1. Short Notices on the Development of the Delay Optimal Control Theory

Let two control systems be given and one of them be controlled by the influence at the time interval [f,,4],
worked out by the second control system at the same time interval. With this, before the control influence affects the

first control system, a definite time 7 > 0 elapses. The time z is the so-called delay. A classical mathematical model
corresponding to the above considered situation is the following system of control differential equations:

{L(p)x =y(-1),
M(p)y=u(®).

Here L(p) and M (p) are given linear differential operators with constant coefficients; u(¢) is control function

and y(¢) is control worked out by the second control system.

It is known that many real control objects can be described by such mathematical model. Optimal control problem
for delay control differential equations was posed by R.Gamkrelidze. At first an analogue of Pontryagin’s maximum
principle for the optimal control problem with fixed initial moment

x(t) = f(x(). x(t = 7). u()).t €[fy.1],
x(t) = (1)t €[ty —7.1,],
4 —t, — min,
was proved in [1].
The paper [1] became the basis for the development of the mathematical theory of optimal control with delayed
arguments in many countries, including Georgia. Further development of this theory in Georgia is described in [2].
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2. Problem Statement. Necessary Conditions of Optimality

2.1. Problem Statement. Let R be an n-dimensional vector space of points x = (xl,.‘.,x”)T , where 7" denotes

transposition; the function f(f, ¥,.... V. Z1,--»Z %) 18 continuous on/ x O*xG™ xV and continuously differen-

tiable with respect to y,,i = s and z,,j=1Lm, where] =[a,b]cR} andO c R;‘,G CR], V c R, are open scts,

with thisn =k +m and x=(y,z)" . Suppose also that scalar functions 7, (¢),o fLON €R] are absolutely continuous
and satisfy the following conditions:
7, () <1,7,(1)>0,0,(1) <1,6,(1) > 0.
Let Q be a set of piecewise continuous control functionsu(f) eU with discontinuity points of the first kind,
where {7 <}/ is an arbitrary set.

To each element y = (£, 1. u(-)) € A = 1> x Q) we assign the differential equation
s 0-t1>

(1) = (0. 20D = [T 0)ornns Y@ (1), 2(01 (D)., 2(0,, (), (1) @D

with the initial condition
xX(1) = (1), 20 = (@), gD, t €[2.15). x(te) = (v, (1) - 22

where @) e€0,g(f)eG,te[z,b] are continuous initial functions and 7 =min(z(a),...,

7.(a),0,(a),....,0,,(a)) ; ¥, €0 is afixed point.
The condition (2.2) is said to be a mixed initial condition. It consists of two parts: the first part is
Y = p(d),t €[T,1,),3(ty) = ¥, , it is the so-called discontinuous part, because, in general, y(f,) # ¢(f,) ; the second

part is z(r) = g(¥).t €[7,1,], it is the so-called continuous part because always z(f,) = g(t,).

Definition 2.1. Let x = (f,,4,u()) € A, where ¢, <f; <b. Afunction x(; ) = (y(t; p), z(¢; ,u))T, telr,f], where
y(t, ) €O, z(t; u) € G is called a solution corresponding to the element # , if it satisfies condition (2.2) on the
interval [¢,,f], is absolutely continuous and satisfies Eq. (2.1) almost everywhere.

Definition 2.2. Anelement u = (¢,,4,u(-)) €A is said to be admissible if the corresponding solution x(t) = x(t; 1)
satisfies the conditions

{qi(to,tl,x(tl)) <0,i=11,

qi([O:tlzx(tl))ZO:i:ll+171- (23)
We denote the set of admissible elements by A, .
Definition 2.3. An element 1, = (fy,.4,.%,(-)) € A,, where #,.1,, € (a.b), is said to be optimal if
q° (top 110+ X0 (110)) <¢° (1017 %(2;) 24

for any s € A, where the functions ¢’ (¢,,t,,x).i = 0,/ are continuously differentiable with respect to .4, €  and
x=(2) {0 eRIve0.2€G | %)= (o). 200 = ¥t o).
Here and in what follows, it is assumed that u,(f) =u,(t,,+) for ¢ <t,, and u,(t) =u(t,,—) for t >, . It is

obvious that these suppositions do not affect the optimality of the element s .
The problem (2.1)-(2.4) is called an optimal control problem with mixed initial condition. It consists in finding an

optimal element 4, .
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2.2 Formulation of the main results. To state the main results we need the following notations:

Joi = S oo Yoss Yo 90 s @), W(fpﬂ (200D P(T (200 ), 8(01 (20 ))s--» 8(T (19 D)5 (P ), i = @
(G MLLAA Ae
i p—i

Further y;(¢) is an inverse function to z;(f), y? = y,(tyo) and p,(?) is an inverse function to (1) ;
ORI TGN C20) BN CART (A0 ) MU AT €2 IR C N 6410 ) I (1 ¢ 2) NI
20O N U0 [0 = L Vo@D s Yo @iy (). 0t 00)s P11 (D plT, (),

s 2 (01 (7 Vs 20 (0 (7] N ()i = p+Ls.

Theorem 2.1. Let 1, =(ty.t.u, (") be an optimal element and xy(t) = (¥ (t).z, (t))T be corresponding solu-
tion and the following conditions hold:

2.1. 710 =ty,i =1, p and ygﬂ <..< yf <t,:
2.2. There exist finite limits y; = y,(tyo—).i = L_S and a number 5> such that
N <..<y, (1)1 €ty —5.1);
2.3. The function g(t).t €[ty, —O.ty ] is absolutely continuous and there exists a finite limit ¢~ = g(ty,-).

Then, there exists a vector w=(m,,..,m;)#0, where 7, <0, and a solution

Y@ = @), x®) =W D,.. ). 1 (©),.... X, ) of the equation

k
Yr(0) ==Y (i () foy, Iy, O, (),

i=1

7)== F(p;0) foz, ;D15 (.1 €lto. 1],
J=1 @2.5)
() =0,t> 1,

such that the conditions listed below hold:

a) the maximum principle for the control u,(t), that is,

Y@ foltl= I;fle%xl}’(t)f(t»J/o @ (D),.... Yo (7, (1), 2o (01 (D))..... 20 (0, (D)), u)). 1 € [Leg . 110 |1

b) the condition for the function Y(t) and vector m W(toy) = 7 Qg 7,q (too-tio» Xo (t10)) = 0,1 = E;
¢) the condition for the final moment t,,: 7 Qo ==Y (t10) foltiol:

d) the condition for the initial moment ty, :

p-1
7 Qur, 2 Wltoo) foo = Voo oo + D i =7 M oi = 75 Jop 1 +
i=1

D YOO o = fu ol = 2(t)E -

i=p+l

Here flt]= f(t. ¥ (5 (D). 0o (7,(0)), 20 (07 (D)).....20 (0, (D), ().

0
Q= (q0>~~>ql)T > Qo = aQ(toostw:xo(th))-
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Some comments: the expression
p-1 5
= Ploo)r foo + 2 G =7 M oi =V Jopl + DY Do (7 )= (5 = 2(t00)8 ™
i=1 i=p+l

is the effect of the mixed initial condition; the addend
“ N 0 0 0 N1
~W(to 71 foo + 3. G =7 Moi = 7o Sop) + 20 YOO (7 D = L ()
i=1 i=p+1
is the effect of the discontinuous part of the mixed initial condition; the term y(z,,)g ~ is the effect of the continuous
part of the mixed initial condition; if ¢(fy,) = ¥, then foo =---= fo, and f,,(y°-) = f;,(°-).i = p+1,s because the

effect of discontinuity is equal to zero; if the conditions 7, <...<y; are fulfilled, then the second part of condition

2.2) is superfluous; Theorem 2.1 corresponds to the case when at the point 7, left-sided variation takes place. It is
proved by the method given in [3,4].
The theorem proposed below corresponds to the case when at the moment 7, right-hand variation takes place.

Theorem 2.2. Let p, = (ty.4.U, (")) be an optimal element and condition 2.1) of the Theorem 2.1 and the
Jfollowing conditions hold:

2.3. There exist finite limits ;/l+ =9;(tgt+),i = 1,_s and a number § >0 such that
N <<y, (0.1 €(tgg.log +O):;
2.4. The function g(),t €[ty .ty +01 is absolutely continuous and there exists the finite limit ¢* = g(ty,+).
Then there exist a vector m =(r,,...,m;) #0, where 7, <0, and a solution YY) =@ @), () of Eq. (2.5)
such that the conditions a), b), ¢) hold and for the optimal initial moment t,, the following inequality is fulfilled:

p-1
7 Qor, < Vltoo) foo = ¥t foo +Z(7;1 Vi Mo =7 pfopl +
i

D YOO o D= fu ) DI = 2(t0)g "
i=p+1
Theorem 2.3. Let p, = (fyy.4,.u, () be an optimal element and conditions of the theorems 2.1 and 2.2 hold
and the function g(t) is continuously differentiable in a neighborhood of the moment t,. Moreover
p-1 p-1 R
P S0+ 2 G =M =7 = W S+ 2 =¥ o =7y Sop = Jo
i=1 i=1
Ufor 07 ) = KWy =o' 0= S Ol =f;. i=p+ls.
Then, there exist a vector m = (m,,...,m;)#0, where 7, <0, and a solution Y (t)=(y (), (1)) of Eq. (2.5),

such that the conditions a), b), ¢) hold and for the optimal initial moment t, the following equality is fulfilled

70, =Wt oo — fol+ ZPGO], — 2t try).

i=p+l
This theorem corresponds to the case when at the point 7, doubly-sided variation takes place.

Remark. If a rank of the matrix (Do, -Qo;-Qox) is equal to 1+/, then the solution ¥(r) in Theorem 2.3 is
nontrivial.
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3. Linear Time-Optimal Control Problem
Let us consider the optimal control problem
x() =4y +B )yt —t)+ A, z(t—o)+Cu(@),t €[ty )1 e Lu() €,
x(t) = (.20 = (p().g(O)" .1 €[a=70.10) » x(tg) = (.2 (o))" x(1) = 1
t, —1, — min,
where 7 >0, o > 0 are given numbers, 7, = max(z,o) and 4,,4,.B,,B,,C are constant matrices with appropriate

dimensions
Theorem 3.1. Let i, = (ty,.t,.u,()) be an optimal element and t,, +7 <t,,; the function g(t) is continu-

ously differentiable in a neighborhood of the moment 1, . Then there exists a nontrivial solution ¥ (f) = (w (t), y (t))
of the equation

(1) = V()4 ~ P +0)B,.
x(0) =Y A, —V(+0)By.1 €tyy. 5]
Pty =01 > 1y,

such that the conditions listed below hold:

3.1. The maximum principle for the control u(t), that is,

Y()Cuy(t) = max Y()Cu, t €[ty, 5]
uel ’

3.2. The condition for the final moment t,,
Yt yo (o) + By (o =7) + A2 () + By 2o (1 = 0) +Cut (1)1 2 0;
3.3. The condition for the initial moment t,
(oo Ao + Bip(tog =)+ 4,8 (t0) + Byg(tog =)+ Citg (£) 1+

Wty +7)B;[vo —@too)]— 2 (t00)€ eo) = 0.
Theorem 3.1 follows from Theorem 2.3.
Now we consider a linear optimal control problem with a discontinuous initial condition

x(H) = Ax() + Bx(t — 1)+ Cu(t),t €[ty ., ;] < Lu(-) € Q,
x(1)=v(t),t €[ty —1,1y),x(ty) = x5, x(t)) = X,
t, —t, —> min,
where 4, B are constant matrices; v(¢),f €[a—7,b] is a continuous function; Xx,,x; are fixed points.

This problem is a particular case of the above provided problem.
Theorem 3.2. Let 1, = (ty,.1.u4, () be an optimal element and ty, +7 <t,,. Then there exists a nontrivial

solution y(t) to the equation
w(O) =—wOA-yw(E+7)B,r ety bl
w()=0,t>1,

such that the conditions listed below hold:

3.4. The maximum principle for the control u,(t)

w(O)Cuy (1) = []fleaUX w(H)Cu, t €ty h,] ;

3.5. The condition for the final moment f,
w (o) Ax, (o) + Bxy (g —7) +Cuy (1,,)]1 2 0;

3.6. The condition for the initial moment ty,
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(o) Axy +Bv(ty, —7) +Cuy (Lg)]+w(ty +7)[x, — vy )] =0.
Example. In the space R? we consider an optimal control problem with discontinuous initial condition
O =x*@-D-1Lrelty,t,1€l =[0,5]
() =u@) e[-11],
¥ (o) = 0,57 (1) = .1 €ty —L1o). x* (1) = 0.x' (1) = 1. x* (1) = 4.
t, —f, = min.
Let (fy,4.4,(-) be an optimal element. For an arbitrary ¢, >0 on the interval (7,,#, +1] we have
[2 t2
1 0
x({l)=——7+—.
® A
It is clearly seen that x'(f) =1, t e (ty.t, +1] . Thus £y, +1<1,. The assumption of theorem 4.2 holds.
According to theorem 4.2 there exists a nontrivial solution y (t) = (y, (¢),y, (¢)) of the equation
Wy (1) =0,
W)=y (t+ Dt €ty b1, G.D
w (1) =01 >ty
such that the following conditions are fulfilled:
- the maximum principle u, (t) = signy, (¢) ; the condition for the optimal initial moment 7,
~too1 (too )+ (oo Do (o) + Looiy (Fop +1) = 0, (g (fo0) = 1o (fo0 ) (G2
- the condition for the optimal final moment #,,
Y1 (610)[%5 (o =D =11+ (110uo (110) 2 0. -
The solution of the equation (3.1) is
a) [ e [t > t ] 2
Y (1) = { o G3)

0,1>1y,

oty —t =D+ Bt elty.t,, 11,
Wy () =3P, telfy —Lhgl,
0,t>1,,

where o, f are arbitrary numbers .

From (3.2), taking into account y/(¢,,) =y (f,, +1) (see (3.3)), we get w(ty,)u,(ty,) =0. There exists a number

& >0 suchthat v, (¥) # 0 for ¢ € (fy,.1,, +¢&) because we have either u(¢,,) =1 or u,(fy,) =-1. Thus v, (f,,) =0.

Consequently the optimal control u,(?),t €[t,,,t;,] is constant and it is equal either to 1 or to -1.

Elementary computation shows that the optimal control is #,(#) =1, optimal moments are ¢, = 0,f,, =4 and the

optimal trajectory is

[2

-, tefo),
X0 =1
t

—=2r+L[14],
5 [1.4]
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