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ABSTRACT. For the Hall’s w-power groups coset lattices are constructed. The fundamental theorem of affine
geometry is proved. © 2007 Bull. Georg. Natl. Acad. Sci.

Key words: affine geometry, w-power group, lattice.

The notion of a discrete w-power group was introduced by F.Hall [1]. At the present time there are a number of
works where the properties of w-power groups are studied [2]-[10]. In [11] the fundamental theorem of projective
geometry for w-power groups was proved for principal ideal domains which are not fields.

Let G be only w-power group over a binomial ring 7. Consider the set CL(() consisting of all cosets of G with
respect to all w-subgroups and an empty set &. On CL(G) introduce the partial order:

X, cX,oX <X,

forall X, X, e CL(G).
Proposition 1. 4 set CL(G) is a complete lattice with respect to the operations “U* and “~* defined as follows:
Joru, =a,-A,, aed, a,eG, A, € CL(G) a set-theoretical intersection;

@ ﬂu . 18 a set-theorefical intersection;

aed

(ii) ﬂua = aﬁ<Aa, Qaa;,a eJ>,

aed
where [ is some fixed index from J.
Let G and G, be w-power groups over the rings 1 and #¥, respectively. The bijection f:G—>G, will be called a
semilinear isomorphism with respect to the isomorphism o /#— W, if the equality

FOxgy = £ )7 f ()7

is fulfilled for any x,, x,€G and «,, a,€ W and f'will be called a semilinear antiisomorphism if the equality

Loy = f(x,)7 fa) 7
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is fulfilled for any x|, x,€G and &, o, €.

We say that the fundamental theorem of projective geometry is valid for the w-power group G over the ring W if
the lattice isomorphism ¢ : L(G) — L(Gy) , where L(G) is the lattice of all w-subgroups of G and G, is a w-power
group over the ring /7, implies the existence of a semilinear isomorphism /:G—G, with respect to the isomorphism
a.W—W, such that f/(4)=p(A) for all 4 € L(G).

Since in the lattice CL(G) only the elements of G cover &, the isomorphism f:CL(G)—>CL(G, ) defines the bijection
GG,

For all the possible isomorphisms f'which in the sequel will be called C-isomorphisms we shall select those for
which f{1)=1. Such isomorphisms will be called natural C-isomorphisms. If /:CL(G)—>CL(G, ) is the isomorphism then
the bijection ¢ defined by the equality

P = fLrOf!

will be a natural C-isomorphism.

We say that the fundamental theorem of affine geometry is valid for w-power group G if any natural C-isomor-
phism is either a semilinear isomorphism or a semilinear antiisomorphism.

Remark 1. If a4 is a fixed element and f{a)=a, then the mapping

P(x) = f(@)|f(a]”

is a natural C-isomorphism. Indeed, ¢ will be a C-isomorphism defined by the element o 1 j.e. it will be an automor-

-1
phism {a]} € Aut[CL(G)]; since ¢(l) = f(a)a;" we have that /, is natural C-isomorphism.

Example. Not each natural C-isomorphism (antiisomorphism) is a semilinear isomorphism. Any onedimentional
vector space over Z, admits (p-1)! natural C-automorphisms while the group of internal automorphisms Z § has order
p-1. Therefore for p>3 one-dimensional space over Z, admit natural C-automorphisms different from ordinary ones.

Proposition 2. Let CL(G) -CL(G,) be a natural C-isomorphism. Then the following statements are true.

(1) finduces a lattice isomorphism f L(G)—> L(G, );

@ f(<M>): (f@1)) for any subsetM < G

3) f(a<b>): f(a)<f(b)> Jorany a, beG.

Assume that /¥ is a commutative domain. The I7-group G is called torsion-free if cx=0 (e W, xe ) implies o=0 or
x=0.

Proposition 3. Let CL(G) -CL(G,) be a natural C-isomorphism betweentorsion-free w-power groups over the
rings W and W,. Then

@ MUGD=AAG));

(b) the nilpotency classes on the subgroups coincide;

(©) There exists an isomorphism o: W—W, such that flua)y=o(1)f(a), ueW, acG.

Theorem (Fundamental Theorem of Affine Geometry for J7-power Groups). Let f.CL(G)—CL(G, ) be a natural C-
isomorphism between the w-power groups G and G, over the rings W and W, respectively, then [ is either a
semilinear isomorphism or a semilinear antiisomorphism with respect to the isomorphism o: W—W,.

Remark 2. Thus we have satisfied ourselves that using coset lattices the fundamental theorem of affine geometry
can be proved for torsion-free w-power groups over fields, while the fundamental theorem of projective geometry fails
[11].
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