Mathematics

Selected Papers of the Symposium dedicated to the 80th Birthday of Academician Revaz Gamkrelidze (Batumi, 17-21 September, 2007)

Affine Geometry of Hall's w-Power Groups

Alexander Lashkhi*, Tengiz Bokelavadze**

* Shota Rustaveli State University, Batumi

ABSTRACT. For the Hall's w-power groups coset lattices are constructed. The fundamental theorem of affine geometry is proved. © 2007 Bull. Georg. Natl. Acad. Sci.

Key words: affine geometry, w-power group, lattice.

The notion of a discrete w-power group was introduced by F.Hall [1]. At the present time there are a number of works where the properties of w-power groups are studied [2]-[10]. In [11] the fundamental theorem of projective geometry for w-power groups was proved for principal ideal domains which are not fields.

Let G be only w-power group over a binomial ring W. Consider the set CL(G) consisting of all cosets of G with respect to all w-subgroups and an empty set \emptyset . On CL(G) introduce the partial order:

$$X_1 \subseteq X_2 \Leftrightarrow X_1 \leq X_2$$

for all $X_1, X_2 \in CL(G)$.

Proposition 1. A set CL(G) is a complete lattice with respect to the operations " \cup " and " \cap " defined as follows: for $u_{\alpha} = a_{\alpha} \cdot A_{\alpha}$, $\alpha \in J$, $a_{\alpha} \in G$, $A_{\alpha} \in CL(G)$ a set-theoretical intersection;

(i) $\bigcap_{\alpha \in J} u_{\alpha}$ is a set-theoretical intersection;

$$\text{(ii)}\quad \bigcap_{\alpha\in J} u_\alpha = a_\beta \Big\langle A_\alpha, Q_\alpha a_\beta^{-1}, \alpha\in J \Big\rangle,$$

where β is some fixed index from J.

Let G and G_1 be w-power groups over the rings W and W_1 respectively. The bijection $f:G \to G_1$ will be called a semilinear isomorphism with respect to the isomorphism $\sigma:W \to W_1$ if the equality

$$f(x_1^{\alpha_1}x_2^{\alpha_2}) = f(x_1)^{\sigma(\alpha_1)} f(x_2)^{\sigma(\alpha_2)}$$

is fulfilled for any $x_1, x_2 \in G$ and $\alpha_1, \alpha_2 \in W$ and f will be called a semilinear antiisomorphism if the equality

$$f(x_1^{\alpha_1}x_2^{\alpha_2}) = f(x_2)^{\sigma(\alpha_2)} f(x_1)^{\sigma(\alpha_1)}$$

^{**} A. Tsereteli State University, Kutaisi

is fulfilled for any $x_1, x_2 \in G$ and $\alpha_1, \alpha_2 \in W$.

We say that the fundamental theorem of projective geometry is valid for the w-power group G over the ring W if the lattice isomorphism $\varphi: L(G) \to L(G_1)$, where L(G) is the lattice of all w-subgroups of G and G_1 is a w-power group over the ring W_1 , implies the existence of a semilinear isomorphism $f: G \to G_1$ with respect to the isomorphism $\alpha: W \to W_1$ such that $f(A) = \varphi(A)$ for all $A \in L(G)$.

Since in the lattice CL(G) only the elements of G cover \emptyset , the isomorphism $f:CL(G) \rightarrow CL(G_1)$ defines the bijection $f:G \rightarrow G_1$.

For all the possible isomorphisms f which in the sequel will be called C-isomorphisms we shall select those for which f(1)=1. Such isomorphisms will be called natural C-isomorphisms. If $f:CL(G) \to CL(G_1)$ is the isomorphism then the bijection φ defined by the equality

$$\varphi(x) = f(x)[f(1)]^{-1}$$

will be a natural C-isomorphism.

We say that the fundamental theorem of affine geometry is valid for w-power group G if any natural C-isomorphism is either a semilinear isomorphism or a semilinear antiisomorphism.

Remark 1. If $a \in A$ is a fixed element and $f(a) = a_1$ then the mapping

$$\varphi(x) = f(ax)[f(a_1)]^{-1}$$

is a natural C-isomorphism. Indeed, φ will be a C-isomorphism defined by the element a_1^{-1} i.e. it will be an automor-

phism
$$\left[\stackrel{\sim}{a_1}\right]^{-1} \in Aut[CL(G)]$$
; since $\varphi(1) = f(a)a_1^{-1}$ we have that f_1 is natural C -isomorphism.

Example. Not each natural C-isomorphism (antiisomorphism) is a semilinear isomorphism. Any one-dimentional vector space over \mathbb{Z}_p admits (p-1)! natural C-automorphisms while the group of internal automorphisms \mathbb{Z}_p has order p-1. Therefore for p>3 one-dimensional space over \mathbb{Z}_p admit natural C-automorphisms different from ordinary ones.

Proposition 2. Let $CL(G) \rightarrow CL(G_1)$ be a natural C-isomorphism. Then the following statements are true.

- (1) finduces a lattice isomorphism $f: L(G) \rightarrow L(G_1)$;
- (2) $f(\langle M \rangle) = \langle f(M) \rangle$ for any subset $M \subseteq G$;
- (3) $f(a\langle b \rangle) = f(a)\langle f(b) \rangle$ for any $a, b \in G$.

Assume that W is a commutative domain. The W-group G is called torsion-free if $\alpha x=0$ ($\alpha \in W$, $x \in G$) implies $\alpha =0$ or $\alpha =0$.

Proposition 3. Let $CL(G) \rightarrow CL(G_1)$ be a natural C-isomorphism betweentorsion-free w-power groups over the rings W and W₁. Then

- (a) f(Z(G))=Z(f(G));
- (b) the nilpotency classes on the subgroups coincide;
- (c) There exists an isomorphism $\sigma: W \to W_1$ such that $f(\mu a) = \sigma(\mu) f(a)$, $\mu \in W$, $a \in G$.

Theorem (Fundamental Theorem of Affine Geometry for W-power Groups). Let $f:CL(G) \to CL(G_1)$ be a natural C-isomorphism between the w-power groups G and G_1 over the rings W and W_1 respectively, then f is either a semilinear isomorphism or a semilinear antiisomorphism with respect to the isomorphism $\sigma: W \to W_1$.

Remark 2. Thus we have satisfied ourselves that using coset lattices the fundamental theorem of affine geometry can be proved for torsion-free *w*-power groups over fields, while the fundamental theorem of projective geometry fails [11].

მათემატიკა

აკადემიკოს რევაზ გამყრელიძის დაბადებიდან მე-80 წლისთვისადმი მიძღვნილი სიმპოზიუმის მასალები (ბათუმი, 17-21 სექტემბერი, 2007)

ჰოლის w-ხარისხოვანი ჯგუფების აფინური გეომეტრია

ა. ლაშხი^{*}, ტ. ბოკელავაძე^{*†}

ჰოლის *w*-ხარისხოვანი ჯგუფებისათვის აგებულია მოსაზღვრე კლასების მესერები და დამტკიცებულია აფინური გეომეტრიის ძირითადი თეორემა.

REFERENCES

- 1. Ф. Холл (1968), Математика (Периодическое издание переводов иностранных статей), 12, 1: 3-36.
- 2. М.И.Каргаполов, В.П.Ремесленников, Н.С.Романовский и др. (1969), Алгебра и логика, 8, 6: 643-659.
- 3. А.Г.Мясников, В.П.Ремесленников (1981), ДАН СССР, 258, 5: 1056-1059.
- 4. Н.Н.Магомаев (1971), Известия ВУЗ, Математика, 1: 45-62.
- 5. А.Д.Тавадзе (1975), Сообщения АН ГССР, 79, 2: 301-304.
- 6. А.Д.Тавадзе (1977), Сообщения АН ГССР, **88**, 2: 289-291.
- 7. А.Д.Тавадзе (1976), Сообщения АН ГССР, 84, 2: 273-276.
- 8. А.Д.Тавадзе, А.Д.Шмелькин (1979), Сообщения АН ГССР, 93, 2: 277-279.
- 9. М.Г.Амаглобели, В.П.Ремесленников (2000), Алгебра и логика, 6, 3: 249-272.
- 10. M.G.Amaglobeli (2000), Bull Georg. Acad. Sci., 162, 2: 226-228.
- 11. A.Lashkhi, T.Bokelavadze (2006), Bull. Georg. Acad. Sci., 173, 1: 17-18.

^{*} შოთა რუსთაველის სახელმწიფო უნივერსიტეტი, ბათუმი

^{**} ა. წერეთლის სახელმწიფო უნივერსიტეტი, ქუთაისი