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ABSTRACT. The Japanese mathematician S. Takasu first constructed homology and cohomology groups of the
pair (G, H) of a group and a subgroup by using the embedding f : H — G. In the present paper, this theory is
generalized for any homomorphism of groups and a number of classic results are proved. Cohomology group of the
second order is characterized by the use of relative widening. © 2008 Bull. Georg. Natl. Acad. Sci
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As is known, groups of homologies and cohomologies of Massey-Takasu for group pairs (G H) are defined by
embedding f: H—>G, H<G [1].

In our case these definitions are generalized for arbitrary group homomorphism ¢ : TI—>G. In particular, homology
and cohomology groups of » order for the homomorphism ¢ are defined and if [1=H, we get the known theory [2].

Let A be an arbitrary G-module. Then A gets [1-module structure in a natural way. If we consider G-projective
resolvent X—Z and TT-projective resolvent Y—Z (Z is considered to be trivial G-module) over the ring of integral

—
numbers Z, then there exists a chain transformation F:Y— X which generates the mapping F :Y %A ->X (?;A ,

F(y®a)=F()®a.

Let us construct the 7 -relative chain complex N, (f) = Z N, (f ) [1].
n

Definition 1. Let the homology group of 7 order over the constructed complex N, (}_7) be called the homology
group of »n order of homomorphism ¢ and denote it as follows:

H,(p. 4) = H,[N.(F).
Let us consider G-projective resolvent X—Z and Il-projective resolvent Y—Z over Z. In this case there exists

E:Y—X which, in its turn, causes mapping E: Homg (X, A4) - Homp (Y, A4), E(a) =a-F, axeHomg(X,A4). Let

us construct the £ -relative cochain complex N : (E): Z N7 (E ) [2].
n

Definition 2. Let the homology group of » order over constructed complex N *(E) be called the cohomology
group of » order of homomorphism ¢ and denote it as:
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30 Rezo Katamadze

H" (. 4)=H,(N"(E)

9
Definition 3. Tensor product AgG is called Abelian group generated by symbols a® g, where aed, geG

which are interrelated in the form:

(a+ad")®g=a®g+a'Q®g, a®(g+g')=a®g+a®g',
a®x-g=a-x®g.,a,decAd, g.2€G, ;1.
x-g=9x) g, ax=a-¢(x).
Define the group Hom/ (G, A) as the set of all the ¢(IT)-homomorphisms from G into 4, i.e.
Homfy G, A)={f :G > A1 [lp(x)-g]=9(x)- / ()}
The constructed group receives G-module structure in the following way: for arbitrary g.g'e G

(g-/Ngh=r(g"g).

Let X and X" be G-projective and IT-projective resolvents respectively over Z. Then for identical mapping over Z
there exists mapping F : X'— X . which, in its turn, assumes

— ? —
FiX'®G X, F(x®g)=F(') g.xeX.gel.
Define the cylinder of algebraic mapping M “ (f ) and F -relative chain complex NZ (]?) as follows:
— .9
My (F) = [Xo ®GJ ®X,.
I
0y (30 ® 2. %) =0, (x, ® g.x,) € M (F),
— P . P
M, (F)= [Xn ®G]®[an ®G]®Xn, n=>l,
I I

0,(x,®g.x%,,®g".x,)=((x,)®g—x,, @g' (0, )® g,x, + F(x, , ©g")
(x,®g.%,,©g".x,)eM,(F). n=z2,
5 (¥ ©g.x,®g' %)= (@) ® g - ¥, ® g~ + F(x, ®g")

No(F)=X,. 8,X,=0,
_ . @
Nn(F)z[XM@G]@Xn, n>1
I1

0,(x, 1 ©g.x,)=(~(x, ,)®g.0x, + F(x, , ®g)). nxl,
0, (xé) ®g.x)=0x +F(x£) ®g).

Theorem 1. Cylinder of algebraic mapping M “ (F ) for F is G-projective resolvent over .
Proof. Construct the mapping

E:MO(F)—>Z, E(xé ®g,x, = g'(x('))-g +g(x0)),
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where ¢': X, — Z and ¢: X, — Z are given mappings. Then
o0, v, ®g.x) ®g'.x )=, }- g +&(Fl, @)= —e'(x) }- g +2'(x) )- g = 0.
Besides, Ker(s)c Imo, ic. if (v, ®¢.x, )e Ker(s) then Flx, ) g+, € Ker(z) as
alvy ® g.xo )= &'y ) g +2ley) = 6(Flxy ) )+ 2(x,).
From acyclicity ¥ it follows that there exists x e X, for which o,(v)=Fl(x,) g+x,. As
0,0-x, ®g.x )=, ®g.x,). then (v, ®g x,)emd,. Thus, Imo,, =Kerd,, n=1. Therefore,

H, (MZ (]7» =H,(X), n>0. Hence, M”* (F) is G-projective resolvent over Z.

Theorem 2. (1). For arbitrary G-module A, N* (F)@A is relative chain complex mapping
G

P
CD:[X'@G}@A —->X®A4
n Jc G
and the following equality takes place:
1,0 4)=11,(N* (o 1),

Q). If'Y is G-projective resolvent over A, then N* (f)@Y is relative chain complex mapping:
G

9
o (X'@Gj@Y > X®Y
n )G G
and the equality takes place:

,(.4)=1,(N* Fler),

Proof. (1) is evident;

Q. > ([X;%G]%Yj]-i— > X; 01, =

i+j=n-1 i+j=n

G .= G
i+j=n

. @ . —
=X ®F, +| X ®G+X, |®F, | +-+| X, ,®G+X, |®F, = N\FI®T .
OGn[OH I]G n-1 (n—ln nj 0 z 1() Jj.
Theorem 3. For each short exact sequence of G-modules and G-module homomorphisms
0>A4A—->B—->C—>0
there exists a long exact homology sequence:

> H, (9. A)> H,(p.B)> H,(@.C)> H, (p.4) > -

Proof. It is evident that there exist G-projective resolvents X, Y and 7 respectively over A, B, and C, for which
diagram
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\
\

B < e
o«

\
SER

0 — - - - 0

is commutative and the rows are exact. As N7 (F) is G-projective resolvent, then the sequence
0> N (Flox - N (Fer - v (Fler >0
G G G

is exact. According to Theorem 2 (2) there exists the desired exact sequence.
Theorem 4. [f G is I1-projective module, then

H,(p.A)=Tor?, (I{’é;)n)(Z),A), nzl,

where
w 9
It m (Z) = Ker Z%G —>Z|
Proof. According to the definition the sequence
P — —
0> X'OG —>MZ(F)—> NZ(F)—> 0
is exact and a corresponding homology sequence gives an isomorphism:
— 9
H, (NZ (F)); Ker[Z G > Zj

and
H, N (F)=10r(G.2). n>2.

If G is IT-projective module, then

N MG m (@), n=1
i )= fo®

>

Let us construct a chain complex N in the following way:
No =0. N1 = Ker(VZ () > NZ(F). N = NZ(F). n=2.

A boundary operator in N will be defined by analogy with the complex N ‘ (1?)
Define the mapping

- 9 _ ,
&N —)ZC;[)G, e(x,®@g.x)=¢'(x))®g,

where ¢": X'— X is the given mapping.
To prove Theorem 4 it is enough to prove that:

W Imls)= 18, 1, (2):

@) Im@,) = Kerls):
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() N, is G-projective module;
@H, (NZ (F)@Aj =H, (N ® Aj :
G G
Really, (1). Consider the commutative diagram

— , 9
N2 - Ni —> N, —25 X,8G —— 7Z®G

Iy II
‘F |oz
X, - X, - Z

As dx, + F(x, ® ) =0, where (x) ® g.x, )e N1 = Kerd, then

a.;(x(') ®g,x1):a(g'(x'())(@g):g'(x;))-g :gf(x(’) ®g)=-s0x, =0.

— , P
Hence, Im(E)C I {’G)H) (Z) . On the contrary, if «(n® g)=0, then there exists an element x, ® g € X, %)G for

which &'(x))® g =n® g . As g]?(x(') ® g) =0 then there exists x; € X; for which o&x, +]?(x(') ®g)=0
Thus,

£(x, ®g.x) =¢'(x))®g=n®g.

ie Imle)=12, 1, (2).
(2) As 20,(x; ® g, x,) = —[¢'0x; )® g = 0. then Ima, < Ker(e).

On the contrary, if &(x;, ® g,x,)= —(g'xb )® g =0, then from TI-projectivity G there exists an element
n®gekX, (%G for which —ax, ® g=x,®g. As (x, ®g,xl)eﬁl, then ox, :—F(x(') ®g):6F(xi ®g).
Hence, there exists an element x, € X, , for which ax, = x, — F(x; ® g) . Then

d,(x, ®g.x,) = (— ox, ® g,ox, +}7(xi ®g)): (x, ® g.x))-

Thus, Imo, = Ker(;)‘

4
(3) For an arbitrary element x, € X there exists an element n® g € 7 % G for which &(xy) = Ol(n® gj . Also,
?

: . 9 . = .
there exists an element x, ® g'e X, %G for which ¢'(x))® g'=n® g . As g(F(xO ®g") —xo)z 0, then there exists

x, € X, for which —éx, = F(x, ® g") - x,.-

Hence, x, = Ox; = F(x, ® g") € Im(@,) . Thus, the sequence

P
00— Ker(0)) > X, ®G > X, >0
I

is exact. As X, is G-projective, then this sequence is released, i.e. Ker(0,) is G-projective

(4) Construct a chain complex — N=N (}_7)/ N in the following way:

Bull. Georg. Natl. Acad. Sci., vol. 2, no. 1, 2008



34 Rezo Katamadze

Ny =0:122: 0,20, n22: Ny = N,(F)/N1. No=N,.

For boundary operator 6, we get an isomorphism Ni~No. Hence, (ﬁ ® Aj =0. Onthe other hand, from (3)
G
it follows that the sequence

0—>ﬁ—>N—>ﬁ—>0

is decomposable and we get an exact sequence:
05> N®ASNOASNOASO
G G G
From the sequence of homology of groups we get
H, (ﬁ ® Aj -0
G
Thus, an isomorphism takes place:

H,{N@AJ ;Hn(NZ (Fe Aj ‘
G G
Corollary. IfT1=H is a subgroup in G then

H,(p,4)=H,(G.H,4) .

where H (G,H,A4) is relative to the group of homologies of 77 order of Massey-Takasu [2].
Proof. It is evident that if <G, then

Z[G]= © Z[H],

G/H

i.e. Z[G] is a free Z[H]-module and, moreover, Z|H]-projective module.
Theorem 3. If'G is a [1-projective module, then

H 0. A= Extgy 12, (20, 4) n=1.

Proof. Analogously to Theorem 4.
Corollary. IfT1=H is a subgroup in G then

H"(p,A)=H"(G,H,A).

where H"(G,H,A) is relative to the group of cohomologies of » order of Massey-Takasu [2].

We should note that for G-module A it is possible to construct ¢-relative injective resolvent in a dual way. For
this, let us consider G-injective and I1-injective resolvents Y and ¥’ over A. Then there exists mapping £:7V — 1.
Let

NO(E)=7° . 6(») = (E0).5().
N (E)= Homg (G.y" )@ v”.
8.y = (- 00 +E).00). (@', ) € N (E).

where £:Y — Y'= Hom?(G.Y") is G-mapping, which is defined as: E(v)(g) = E(g - y) . Then the following Theo-
rem is true.
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Theorem 6. [ G is a I1-projective module, then
H"(p.4) = Ext (2. j2, 1 (D).
where 8. 1 (4) = Cokerld — Homfy (G, 4).
Corollary. [fTI=H is a subgroup in G, then
H"(p.4) = H"(G.H, 2, 1 (D).

Let X and X" G-projective and IT-projective resolvents respectively over Z. Construct a cochain complex N in the
following way:

n—1»

N" = Homp, (X)), 4)® Homg (¥, 4).
S, p)= (— O'a +Resg,5ﬂ), (a, e N".

It is easy to check that H"(p,A)=H"(N). (o, p)e Z 2N ) is a two-dimensional cocycle if and only if the
equality takes place:

£1/(8,.83)+ P(81.8283) = (81.82) + (8182.83)
where g,,¢,,8; € G and
Res (x,x') = xa(x') — a(xx') + a(x),
where x, x'eIT.
(e, ) € B*(N) is coboundary if and only if the following conditions are fulfilled:

P(g1.8,) =81 5(gy) —h(g1g8,) +h(gy), g&.8, €,

a(x)=xax—a+Resh(x),aecd, xell

and / is a fixed element from Homg (X, 4), g € A is also a fixed element.

Definition 4. For G-module 4 g-widening is called the three ((_}, 11, p), for which the following condition is true:
(1) G is a multplicative group, in which 4 is a subgroup;

(2) p:G > G isepimorphism, for which Ker(p)=4 (i.e. p isomorphism i : E/A =G),
(3) eae™ = p(e), where ee G, and p(e) is the right G-operator over 4;
(4) TI is a subgroup in G , for which p|; :TT=11.

Definition 5. For G-module 4, ¢p-widened (51, I, pl) and (Ez,ﬁz, pz) are called equivalent, if there exists a

group isomorphism ¢ : G1 =G , for which t| 4 isidentical, |5 :TI, =TI, and p, -1=p,.

Let (5, I, p) be g-widening of G-module 4. Consider a complete system of representatives of cosets in the
factor-group 5/ A and define mapping ¢: G — G which represents an element g€ G in ;™! (@) e E/A . Evidently,
pg=1; and g-a=q(g)-a-q(g)"., g€G, ae A. Define cocycle S €Z*(G,4) as follows:

9(81)-9(22) = £(21.82)-4(2,.82) . g1.2, €G. Blg,.g,)e 4.
B(g1.82)+ P(g182.83) = 815(82.83) + (21.2:83) . £1.82-83€C.
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As (5, I1, p) is g-widening of G-module A4, therefore for each element x e IT there exists «(x) € 4 for which

q(x) = a(x)-x, where x = p(;)‘ From (1) it follows that @ and b are interrelated in the following way:
Plex)=a(x)+x-a(x")—a(xx'), x,x'eIl.

If we consider another system of representatives » : G — G' and define a cocycle E e Z*(G,A) in a similar way

over the definite cocycle e Z?(G, 4), then cocycles Sand S will be interrelated in the following way:

Blg1.82) = Blg1.82)+h(g)+1h(g,) ~h(g: - g2). @
g.2,€G and h is defined by the equality: r(g)=h(g)-q(g), g€G and h(g)ed. If
t: (El,ﬁl,pl )z (Ez,ﬁz,pz) is equivalency of @-widenings of G-module 4, and ¢:G — Gy and .G > 52 , then
pand E, which are defined according to mapping ¢ and r, must satisfy the equality (2), where / is defined by the
following condition: »(g) = h(g)-t(q(g)) . On the other hand, for p-widening (5, ﬁ, p) of G-module 4, an equivalent

¢-widening (5',ﬁ', p') is defined which satisfies the condition: IT'= a 'Ila for cach fixed element @ € A .

Let ¢: (51 , M 2 )z (52 , > , pz) is an equivalency of ¢-widenings of G-module 4. Then

t-q(x)=a(x) -IG): a(x) calxea= a(x)afl ;a)_f1 x= ot(x)cf1 (xa))_c >

i.e. there exists « in ((_}2 I, pz) for which
E(x) =a(x)—a+xa, xell.

But such change of « does not influence cocycle £, i.e. A(x,x) = f(x,x") .

Thus, the class of equivalency of each ¢-widening of G-module 4 unambiguously defines the cohomology class
in H2(p, 4) . On the contrary, it is possible to construct for (c, f) € Z 2 (p, A) ¢p-widening (E,ﬁ, p) and if (e, p) and
(o/,/7) are cohomologic, then we get an equivalent p—widening (51 T, pl) and (éz,ﬁz , pz).

Hence we conclude that the following theorem is true.

Theorem 7. Between the group H?(p, A) and the set of equivalent classes of p-widenings of G-module A there

exists mutual unambiguous correlation.
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