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ABSTRACT. A goodness-of-fit test is constructed by using a Wolverton-Wagner distribution density estimate.
The question as to its consistency is studied. The power asymptotics of the constructed goodness-of-fit test is also
studied for certain types of close alternatives. © 2008 Bull. Georg. Natl. Acad. Sci.
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1. Let X;,X,,....X, be a sequence of independent, equally distributed random variables with values in a
Euclidean p-dimensional space R,, p =1, which have the distribution density f (x) x= (xl,..., xp). Using the

sampling X, X,,..., X . itis required to test the hypothesis
Hy: f =1,
We consider the verification test of the hypothesis /7, . based on the statistics
_ 2
Un = nanpj(fn (x)_ fO (x)) r (x)dx ’

where f, (x) is a kernel estimate of the Wolverton-Wagner probability density,

162 ar Ko, -,)).

a,,a,,...,a, is a sequence of positive numbers monotonically converging to infinity.
Let us formulate the conjectures concerning K (x) and f(x).

p
1°. The kernel K (x) = HK ; (x j) and every kernel K ; (u) possesses the following properties:
J=1

OSK]-(u)Sc<oo, Kj(u):K]»(—u), usz(u)eLl(—oo,oo),
IK].(u)du:I, K9(ux)= K (x) for all uelol] and all xeR, =(-o0,),

where K ;) =K, *K;; * is the convolution operator.

2°, The distribution density f (x) is bounded and has bounded partial derivatives up to second order.
We have proved the following theorem ([1]-[3]).
© 2008 Bull. Georg. Natl. Acad. Sci.
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Theorem 1. Let K (x) and f (x) satisfy conjectures 1° and 2°, respectively, and, besides, let the second order
partial derivatives of the function f (x) belong to L, (R » ) If

ﬁ—)O, yss(::)—)ys, s=12 (0<y, <y <1)
n
and also
ylgn) ¥ +0(a p/2)> (narf/z) zn:apfz -0
n k=1
and
. 2
(nap/z)l[Zajz] -0 as n—o>©®
Jj=1
then
a?o, () U, -0 (f,)—>N(0.1)
=150 s12 e(n)=n ] e G
orlfo)=a,d;(f,)
2
G30)= 2 [0 Sl | G K,k
iml
Also,
27’12J‘foz(x)”z(x)“]xj‘](oz(”)d”S thaﬁ (fo)S ﬁla; (fo)g2;/1Ifoz(x)rz(x)dijg(u)du . ey

Theorem 1 allows us to construct a goodness-of-fit test of asymptotic level « for checking the hypothesis H,
by which f (x) =/ (x) After that we calculate U, and reject the hypothesis /7, if

Unzdn(a):y]I]% deK u)du+, a, o*n(fo), 2

where A, is a quantile of level « of a standard normal distribution.

2. Now we will investigate the asymptotic property of test (2) (i.e. the behavior of the power function as
n—> o).

In the first place we consider the question whether the test is consistent. The following statement is true.

Theorem 2. Let all the conditions of Theorem 1 be fulfilled. Then

Hn(fl):PHl {Un 2 dn(OC)}_>1
as n — o, i.e. the test defined in (2) is consistent against any alternative H, : f (x) * /o (x)
A= I(fl -/ (x) r(x)dx>0

Proof. We have

P [0, 1P = (1) + (), 22,
_», { I(fn(X)—ﬁ(X))zr(X)de®(J%)+Un(/%)anp/2/1a—nanpA—2f(ﬂ(X)—ﬁ(x))¢(x)r(X)dx-a%}=
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_, (2Pl -er)
_ le{ e Ul
o) . a . n n
ot S o070, () =222 6 o | -
R A SRR
1 a? _
a2 asiet-e () T fl)+20“n1(ﬁ)](ﬂ(X)—ﬁ(X))dx)dxj},
where
U0 =nay? [ (1, ()~ WP r)as
9 (x)= (4 ()= /o ()rlx).
Now we will show that I(f - fi(®) (p(x)dx—> 0. Indeed,
I(fn (x)dx Bln +BZn >
n a?
By, :ZQZJ" S ZTJJ.[K("J'(X_X )) K K( (x X; ))]¢
j=1
; j[gzafElK(af (x—xj))—fl(a}o(x)dx,
j=1
where E; () is expectation for the hypothesis ;.
By virtue of the assumption, for f (x) and K (x) we obtain
I
B, = o[;;af} 3)
Next, it can be easily checked that
2 2
ZDg _nz{ZIﬁ(t d{j [t+—]] —Z[jfl(x)dij(u)g,{HaL]] }N
J j=1 j
~n! U ¢72 (x)f] (x) dx— (f go(x)f1 (x) dx)2 j “4)
and
Y EE-ME]T
= " 145/2
B
k=1
Therefore
B4,y ©.1). 3)
DB,
But
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[(£,6)- £ @) o) [ ﬂ%

Hence (3), (4) and (5) imply that

V-0(4) 1 . R PR
I1 =P 2| Un Ui, " A L DB
L(h)="Py, {an [ ) ]> 2| o () +0n(f1) [DB,, 1 T

+O{%2012J+(®(fo)—®(ﬁ»aj Z((f;;/ ﬂ}}

:PHl{af/ws)_@(l)Z : ( | )Mp(l)]}

O—n(fl) _(15/2 Un(fi
Since a?’c, 1(/’1)(U 0 —(E)(fl)) has an asymptotically normal distribution (0.1) for the hypothesis #,.
n
na;p/z —> 0, %ZQ;Z -0, DB, :O[%} and 0<c, So'n(fj)g:l <o, j=01, we have Hn( 1)—>1 as
J=1

n—o.
Thus for any fixed alternative the power of a test based on U, tends to 1 as » — . However, if with a
change of » the alternative changes so that it tends to the basic hypothesis /7, then the power of the goodness-of-fit

test will not necessarily tend to 1. This certainly depends on the convergence of the tendency of the alternative to the
zero hypothesis.
Let us assume now that the hypothesis /7, we are checking is not true; actually, we have the hypothesis

H,: ﬁn(x):fO(x)+yn¢(x)+0(7/n), J/n~L0, xeRlz(—O0,00), qu(x)dx:O.

Theorem 3. Let K (x) and f, (x) satisfy the conditions of Theorem 1. If a, = n° and V= n V2o

2
—<5<l,then
9 2

as n — oo.
Proof. We have

Py, {Un >d, (“)}:

B “1/2(U,(})—®(1n))0n(1n)> N ) al? s A, +ai/2An2}
_PHn{ Un(fln) Un(fo)_/la (®(f0) ®(f1n))5n(fo) n/ an( 0) Un( 0) ,

where

Ay === [ (1 @)= 1o G (e

n

A2 =27 [ (7,0 £, (D (A, 0= Fo (D).

n

Uy = ai [0~ £ ) (e
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11

It is easy to check

oy (fin)
0'5( o)

. 2 1. .
By virtue of Theorem 1, for 5 <o < 5 it can be easily checked that

—>1 as n—>w.

o) s
AR

Further, since % <o < %, from (1) we obtain

ai/z(®(fo)_®(f1n))5;1(fo)—>0

and, moreover,

1/2

- ks - ’ +o0
(0) oy(ﬂ00327nf¢ Qﬂrﬁﬂdx+o@)_an(%)j¢ () r () +0(1).

Denote
B, = f [0, = B2 £ (D (i )= 15 (D)) e
n = i _HElfn (x)— Jin (x) |f1n (x)— Jo (x)‘ r(x)dx

It is not difficult to establish that

501,60 1|

Hence it follows that

1/2 2-96 2
4 z
S KPP [kz ] S )

Now let us consider B,, . We have

1(/; )EIB,ﬂI <ZWEﬂfn(x)—Elfn(xl-‘fm(x)—fo(xXr(x)dxg

<! M{ 302 [ 2 @) K =)0 fo(X))V(X)dX)Z}l/ZS

a

12
1 n |1 2} “1/2 —5/4
————y <cna Y, =C4h —0.
2 Un(fO)aL/z {n n 3 n n 4

From (10) and (11) it follows that
1/2 2798
n__ A,=0|n * +O(n75/4).
Un( 0)

By combining relations (7), (8), (9) and (12) we finally obtain
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Py U, 2d, (a)}~1—CD(/1a S (u)r(u)du]

as n — .
Remark 1. If the smoothness parameter a, =a,,, kK =12,..., then by Theorem 2 we obtain an analogous limit

power function for the alternative /7, of the Rosenblatt-Bickel goodness-of-fit test [4]:
Py {Tn > d,(})(a) }~ 1- (D[/la - ngpz (x)r(x)dx],
n oy
1, = [, 1o 0 (e
where f,(x) is an estimate of the Rosenblatt-Parzen density,
(@)= [ fol)r(e)ax| K2 (@) +a, 2, o,

ol = 2J.f02 (x)r2 (x) dxj K; (u)du

If lim o? (f,)=07. then inequality (1) implies that yc? <o <y,68. 0<y, <1. Therefore, the test
n—®0

based on U, for the alternatives [, and y, #1, goodness-of-fit tests based on 7, are more powerful and,
moreover, they are asymptotically equivalent for y;, =1.
3. Let us now introduce into the consideration the alternatives we call “singular” ([5], [6]):
x—1
Hn :ﬁn(x):fo(x)+an¢ 7/_ +0(Ocn '7n)9
where a, 40, y,10, the function ¢(x) is bounded and has bounded derivatives up to second order,
o*)(x) e L, (- ,%0) and I¢(x)dx =0,/ is some continuity point of »(x) such that (/)= 0 (see also [8]).

Theorem 4. Let K (x) and fln (V) satisfy the conditions of Theorem 1. If

AR :o(n’l/z), na;l/zaz ¥V, —=>¢ %0, Llz:a,;z -0,

n ia
and
; 12
yn{— ak“J —0,
=
then
cr(l)
P, {U, 2d (a)}~1-®| 4, ——2 2(u)du
oz @m0 4, 2 o)
as n—» .
Proof. We write U, as a sum
U =UD 44, +4,,
where

vy = alj(f ()=, () 7 (x)a,
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A :alj(ﬁn(x)_fo (x))z r(x)dx
Anz = zaij‘(fn(x)_fln(x))(fln(x)_fo (x))r(x)dx
Therefore
Py {U,2d,()}=
vl -e(,) 7. (4,) e Ay a4 }
=p n n n n _ﬂ, ® ® . /2 nl n2 .
{ TR (R CUORU TR AR T
Analogously to (6) we have
(/)
-, (fo) -1 (13)
Further, by virtue of Theorem 1, we have
12 (r7(10) _
Py {”" (L; (f®)(f1")) < x} - d(x) (14)
n\J1ln
as n —oo.
aV?
Let us now show that ——"% 5 (. We have
Jn(.fO)
a)E|4,| < 20 a2 H[ (£, E £, 0D (0 (- 13 () 7 (et +
+2na," [|E £,(0)= £, ()1 ()= £ )] 7 (),
and also
na’l/zﬂE f fln(x) |f1n(x) Jo x)‘ r(x) dx = ( 1 %Zakzj.
n M ga
Further,
nay P E[[ (7,60 E 1,0 (1,0 £ 6) r(e) ] <
1/2
<nal/z{n akjf(u)du “K ak(x u))( 1n( ) fo(x)) r(x)dx]z} <
k=1
L1 12
/ 1
<csna, a)) { .[f 2[” ]du+y4 . Za If(u)du[“-t K( [”}/n akzj/n]dtdz] } .
Hence, using the generalized Minkowski’s inequality [7], we obtain
Y 1/2
][0 D) M) 2 ey |
k=1
Thus
1/2 —1/4 -2 1 < -4 v -1 1 z -2
a, E|An2|:0(an )+O Y ;Z a, +0| «, —Zak (15)
k=1

From the condition nc2 a;"? y, —> ¢, #0 it is not difficult to establish that
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a)* Ay =na,” [(fa ()= fo Q) rx)de =na,V af 7, L | (pz[x” ]r(x)dx -
Vn Vn

—>cyr (I)I¢2(u)du, (16)

and likewise it is easy to see that

©(/,)-0( m))ajl(io)w[ 07] (17)

Finally, (13), (14), (15), (16) and (17) imply

1, 0,2, @10 - 2 o |

The conditions of Theorem 4 for a,, «,, y, are fulfilled if, say, we assume that a, =n", o, =n"",

yn:n’ﬂ for g:l—2a—ﬂ, a+ﬂ>%, 0<6£%, p <o, §>%,whiletheconditionsimposedon o, f and

d are fulfilled, for example, for

1 5 1

5 = —, = —, o = —,
2 d 12 6
1 1 27

§=— f=c. a="",
4 p 5 80
1 1 11

5 =—, =—, = —
5 P 6 30

and so on.
Remark 2. If the smoothness parameter a, =a,,, £ =12,..., then by Theorem 4 we obtain the limit power

for alternative /7, of the goodness-of-fit test 7, [8]

Py {1, 2 a0 (@)}~ 1—@(;% <o) jq)z(u)du}.

Op (Uo)

If lim 0'5 :012, then from inequality (1) we have y; o-é galz <n 03, 0 <y, <1. Therefore, for y; =1,
n—%0

goodness-of-fit tests based on U, are more powerful than those based on 7,. Moreover, integrating f;,, (x) we

establish that the alternatives differ from the zero hypothesis by a value of order «,y, :OEL]. Therefore

Jn

goodness-of-fit tests based on a difference between empirical distribution functions like for example, tests a)ﬁ and

Kolmogorov-Smirnov type tests cannot differentiate between “singular” hypotheses and the basic one. Hence, by
virtue of Theorem 4, for “singular” alternatives the tests based on U, are more powerful than those of the type

mentioned above.
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