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ABSTRACT. The amino acid sequence of a mannose-binding lectin DB1 from the yam (Dioscorea batatas)
tubers was determined. Lectin was combined of two isoforms (Cys86) and (L.eu86) with 90% sequence homol-
ogy between two isolectins. DB1 (Cys86) had two intrachain disulfide bonds located at (Cys29-Cys52) and
(Cys54-Cys86), whereas DB1 (Leu86) had one intrachain disulfide bond located at (Cys29-Cys52). DB1 showed
a high sequence similarity to snowdrop (Galanthus nivalis) bulb lectin with the well documented anti-nutritive
effects toward the economically important pests. The results suggest that DB1 may play defensive role in the

yam tubers. © 2008 Bull. Georg. Natl. Acad. Sci.
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Lectins are among wide range of natural defense
proteins found in plants [1]. The possible function of
serving as a chemical defense against large array of insect
pests is well documented [2]. Insecticidal activities were
found to be associated mostly with legume lectins [3]
and cereals [4]. Recently vast amount of reports were
dedicated to insecticidal properties of monocot mannose-
binding lectin GNA (Galanthus nivalis agglutinin). GNA
has been shown to be insecticidal to a range of economi-
cally important pests [5]. GNA have been successfully
used in the search for alternatives to chemical pesticides
in pest control via genetic engineering demonstrating
the broad insecticidal activity of this lectin [6]. In this
paper we describe the primary structure of new monocot
mannose-binding lectin DB1 from Dioscorea batatas
tubers and demonstrated structural homology to GNA.

DBI1 was purified from yam tubers as previously
described [7]. DB1 was reduced with 10 mM
dithiothreitol in 0.25 M Tris-HCI [pH 8.6] containing
10 mM EDTA and 6 M guanidine hydrochloride at 37°C

for 2 h, and reacted with 20 mM iodoacetamide for 20
min at room temperature in the dark. Reduced and
carboxamidomethylated [CAM] DB1 was digested with
endoproteinase Lys-C [S/E=100:1], endoproteinase Arg-
C [S/E=100:1], according to the manufacturers’ recom-
mendations, or cyanogen bromide [CNBr] cleavage in
70% formic acid. Each digest was separated by reversed-
phase HPLC on a TSKgel ODS 120T column [4.6 x 250
mm] using a linear gradient increase of acetonitrile in
0.1% TFA. The amino acid sequences of isolated pep-
tide fragments were determined by the combined use of
a protein sequencer, MALDI-TOF mass spectrometer,
and an amino acid analyzer as described [8]. Homolo-
gous sequences were searched by the FASTA program
accessed by Genome Net WWW.

Oligonucleotide primers [DB1F/DBIR] specific to
DBI1 were designed based on the amino acid sequence
of DB1. cDNA fragments were amplified by means of
RT-PCR as follows [F and R indicate sense and antisense
primers, respectively]:
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DB1F, 5 -TAY GAYAAY GGNAARGCNATHTGGGC-3;
DB1R, 5-GCNGCNCCRTA -DATNACNACRTT-3'.

Total RNA was extracted using Concert Plant RNA
Reagent [Invitrogen, Tokyo, Japan] according to the
manufacturer’s instructions. Poly [A]" RNA was puri-
fied with a Micro-FastTrack mRNA Isolation Kit
[Invitrogen], and reverse transcribed with oligo dT
primer using Access Quick RT-PCR System [Promega,
Madison, WI, USA]. Amplified DNA fragment [0.6 kbp]
generated by PCR with DB1F/DB1R specific primers
was subcloned into the pCR-Blunt 1l TOPO vector
[Invitrogen]. DNA was sequenced on an ABI DNA se-
guencer by cycle sequencing using T7, SP6 and M13
forward [-20] primers and the DY Enamic ET termina-
tor cycle sequencing kit [Amersham PharmaciaBiotech].

The total amino acid sequences of DB1 were deter-
mined by both Edman degradation and cDNA sequenc-
ing as summarized in Fig. 1. DB1 [Cys86, Leu86] were
composed of 108 amino acid residues with a molecular
mass caculated to be 11,807 Da and 11,779 Da, which
are in good agreement with the values [11,813 Da and
11,785 Da] obtained from MALDI-TOF mass spectrom-
etry, respectively [7]. Two isolectins had 90% sequence
homology and were 11 amino acid residues difference

from each other. DB1s include four [Cys86] or three
[Leu86] half-cysteineresidues, respectively. Thisindicates
that extra cysteine residue contribute to disulfide bonds.
The nucleotide sequences were analyzed using a
method of rapid amplification of cDNA ends [RACE].
The cDNA of DB1 [Cys86] included 761 nucleotides
with an open reading frame of 498 nuclectides encod-
ing for a protein of 147 amino acid residues and a sig-
nal sequence of 19 residues. It should be noted that the
C-terminal amino acid sequence, Va-Gly-Val-Ser-Gly-
Gly-Mey-Phe-lle-Glu-Ser-Lys-Ala-Thr-1le-Phe-Gly-Ser-
Leu-Phe-Ala-Asn-Glu-Thr-Thr-Ala-Glu-Ala-Lys-Ala-
Ala-Arg-lle-Ser-Met-Val-Val-Asn-Lys which was de-
duced from the cDNA sequence, could not be detected
in any digest prepared with various proteases. A second
processing step is probably involved resulting in the
removal of a C-termina extension of 39 amino acid
residues [3984 Da] during this post-translational pro-
cessing of the protein. Furthermore, the hydrophobic
character of this C-terminal peptide is consistent with
the possibility that it is removed post-trandationaly.
We reported the presence of mannose-binding lec-
tin DB1 in yam tubers [Dioscorea batatas] accounting
for 20% of the total tuber protein [7]. Due to exclusive
specificity toward mannose and especially toward of1-3]
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Fig. 1. Nucleotide and amino acid sequences of DB1. Nucleotides and amino acid residues are numbered on the side. The putative processing sites

ATGCTCCCGGCCGCCATGGCGGCCGCGGGAATTCGATCTCCTCTTTGCTGCATGGCC
M L PAAMAAAGTIWU RS PILCOCMA

GAlTTT CATACTTTACTCTGGGGAATCCCTCAGGTCCGGCCAAGCCTTGTACCGTGGGAGC
vDFILYSGESLRSGQALYRGS

TACACTTTCATTATGCAGAATGACTGCAACCTAGTTTTGTATGATAATGGCAAAGCAATA
Yy T F I M Q N D CNILV L Y DN G K A I

TGGGCTTCCGGCACTAACGGCCGAGGCAGCGGCTGCTACTGCGCTATGCAGAGTGATGGT
W A S G T NGR G S G CY CAMOQ S D G

AACCTGGTCGTTTATACCAGTAACAACAATGCTGTGTGGGCAAGCAACACCAACGTGGGA
N L vvyYy TS NDNN AV WASNTN V G

CAAGGCCACTACGTCTGCATCCTTCAGARAGAT CGCAACGTCGTCATCTATGGAGGTGCA
Q G H YV C I L Q KD RNV V I Y G G A

CGCTGGGCAACCAACACCAA%ACTGTCGGCGTCTCTGGTGGTA’I‘GTTCATCGAAAGTAAG
RWATNTNT'VGVSGGMFIESK

GCCACCATCTTTGGT TCT TTGCCTGCTAACGAAACTACTGCAGAAGCCAAGGCTGCACGC
A T I F G S L P ANETTAZEA AI KA AA AR

ATTTCCATGGTC GTCAA1C4A7AG TGATGCTGAAGCTTAGTGAACAATATAATAAGCGCATGC
I s M VvV V N K *

ATCCATCGTGACATCTATGGT TCATGCATG CATGCGAGAGTTATAATAAGT TGCTTCGGC

CTTGTATTGCATATGTAGCCCGTGTGTGTGAAGTTTCTACTGTTGCTGTTGGTAACGAGA

AAATAACCTTATTCT TGTGCCAAACAT CGATACATGTGGTGAATAAATGTGAATGCATCC

TATGCCTTTCAGGCAAAAAAAAAAAAAAAAAAAAAAARAAAAAA 761

for the signal sequence and the C-terminal extension are indicated by arrowheads.
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DB1 (Cys)
GNA

DB1 (Cys)

DFI LYSGESLRSGQAL YRGSYTFI MONDCNL VL YDNGKAI WASGT NGRGSGCYCA
DNI LYSGETL STGEFLNYGSFVFI MEDCNL VL YDVDKPI WATNT GELSRSCFLS

MQSDGNLVWYTSNNNAVWASNTNVGQGHYVC! L QKDRNVVI YGGARWATNTNT
MQTDGNLVVYNPSNKPI WASNTGEONGNYVCI L QKDRNVVI YGTDRWATG - - -

GNA

Fig. 2. Aligned amino acid sequences of DB1 and snowdrop lectin GNA. Carbohydrate recognition domain [CRD] are in the boxes.

linkage DB1 was classified into monocot mannose-bind-
ing lectin family. At the monosaccharide level, the lectins
confined into this family bind mannose, but in contrast
to Man-binding legume lectins such as ConA do not
accommodate glucose into its carbohydrate-binding site.
Snowdrop (Galanthus nivalis) bulb lectin GNA is the
first lectin reported from this family having well de-
fined insecticidal properties to a range of economically
important pests [5, 9]. DB1 had 64% sequence homol-
ogy to GNA, especially to its carbohydrate-binding site
[GIn26, Asp28, Asn30, Val32, Tyr34, Asp37, Lys38][10,
11]. Moreover, these amino acid residues were highly
conserved in DB1 [Fig. 2]. Positioning of disulfide
bridges is crucial for ligand contact for some lectins.
DBI contained four or three cysteine residues [Cys86
and Leu86, respectively] at positions 29, 52, 54 and 86.
Consequently, either one or two disulfide bridges lend-
ing stability to the molecule hold polypeptide. Possibly,
an extra cyctein residue [Cys54] forms interchain disul-
fide bond. GNA contains three cysteins at the positions
29, 52 and 86 per subunit and has one intrachain disul-
fide bond located at Cys29-Cys52. Cys86 is free cystein
[12]. Apparently, homology between CB moieties and

36 35&@0}) gﬂ %amg)ma 0

defined structural similarities determines the sugar tar-
get selection and might be an argument of functional
resemblance between DB1 and GNA. GNA binding
specificity is limited to mannose sugars in o-1,3- and
a-1,6- linkages; it binds to comparatively few glycopro-
teins on the gut epithelium of insects and higher ani-
mals. DB1 has shown similar antinutritive effects to-
wards Helicoverpa armigera and Helicoverpa assulta
(Lepidoptera) larvae at different stages of development.
The rate of adults successfully emerging from pupae fed
on DBI1 was 33% when incorporated into artificial diet
at a level of 0.01% (w/w) [13].

Yam tubers of D. batatas are stored for a year after
harvesting and are particularly vulnerable, since they
are more attractive to potential parasites. In addition, as
the resting storage organs yam tubers may lack an ac-
tive defense system to resist various pests. DB1 existed
in yam tubers at significant amounts (20% of total pro-
tein content), where it may function as storage protein.
Preferential association of GNA-like protein with those
parts of plant that are most susceptible to attack by pests
and predators might be an additional argument for the
proposed protective role of DBI.
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