Mathematics

Martingale Measures for the Geometrical Gaussian Martingale

Omar Glonti, Zaza Khechinashvili

I. Javakhishvili Tbilisi State University

(Presented by Academy Member E. Nadaraya)

ABSTRACT. The problems of finding of the martingale measures for some class of stochastic processes in discrete time are investigated. A special class of densities is introduced and minimal relative entropy martingale measure for the process represented by exponential Gaussian martingale is constructed. © 2008 Bull. Georg. Natl. Acad. Sci.

Key words: Gaussian martingale, entropy, martingale measure.

On the filtered probability space \((\Omega, F, (F_n)_{0 \leq n \leq N}, P)\) consider the stochastic process of discrete time with real values

\[S_n = S_0 \exp \{M_n\}, \quad n = 1, \ldots, N, \tag{1} \]

where \(S_0 > 0\) is deterministic, \((M_n, F_n)_{0 \leq n \leq N}, M_0 = 0,\) is a Gaussian martingale with quadratic characteristic \(\langle M \rangle_n = EM_n^2\). We describe the evolution of a risky asset by this scheme.

Now we construct the density process \((Z_n, n = 0, 1, \ldots, N). Define

\[Z_n^\psi = Z_n^\psi \frac{\exp \{\psi_n\}}{E[\exp \{\psi_n\} / F_{n-1}]} , \quad Z_0 = 1, \tag{2} \]

where \((\psi_n, F_n)_{0 \leq n \leq N}\) is some stochastic sequence. It is clear that \(Z_n^\psi\) is \(F_n\) measurable.

Let

\[E \exp \{\psi_n\} < \infty, \text{ then } (Z_n^\psi, F_n)_{0 \leq n \leq N} \text{ is } P \text{ martingale.} \]

Consider the measure

\[Q_\psi (A) = \int_A Z_n^\psi (\omega) dP(\omega), A \in F, \tag{3} \]

which is equivalent to \(P\).

If \(\psi = (\psi_n, F_n)\) satisfies

\[E[\exp \{\psi_n + \Delta M_n\} / F_{n-1}] = E[\exp \{\psi_n\} / F_{n-1}](P - a.s), \tag{4} \]

then \(Q_\psi\) is a martingale measure for \(S\), i.e. \(Q_\psi\) is equivalent to \(P\) and \(S\) is \((F_n, Q_\psi)\) martingale.

Really, from (1),(2) we have...
Martingale Measures for the Geometrical Gaussian Martingale

\[
E^{Q^{\psi}}[S_n/F_{n-1}] = \frac{E[S_nZ_n^{\psi}/F_{n-1}]}{E[Z_n^{\psi}/F_{n-1}]} = \frac{S_{n-1}Z_{n-1}^{\psi}}{Z_{n-1}^{\psi}} E[\exp\{\psi_n + \Delta M_n\}/F_{n-1}] \]

and using (4) we have \(E^{Q^{\psi}}(S_n/F_{n-1}) = S_{n-1} \).

Consider the case when \(\psi = (\psi_n, F_n) \) is the sequence of discrete stochastic integrals

\[
\psi_n = \sum_{k=1}^{n} \phi(k)\Delta M_k,
\]

with predictable \(\phi(k) \), i.e. \(\phi(k) \) is \(F_{k-1} \) measurable. Then from (2), (4) the measure \(Q^* \) with density

\[
Z_n = Z_{n-1} \frac{\exp\{-M_n/2\}}{E[\exp\{-M_n/2\}/F_{n-1}]} \]

is the martingale measure for \(S \), which is \((P-a.s)\) unique among equivalent to \(P \) measures with density process

\[
Z_n = Z_{n-1} \frac{\exp\{\sum_{k=1}^{n} \phi(k)\Delta M_k\}}{E[\exp\{\sum_{k=1}^{n} \phi(k)\Delta M_k\}/F_{n-1}]}.
\]

This density coincides with the density obtained by conditional Escher transform

\[
Z_n = Z_{n-1} \frac{\exp\{cM_n\}}{E[\exp\{cM_n\}/F_{n-1}]} ,
\]

where \(c \) is some constant (see [2], p.540).

Let \(\psi_n = a\Delta M_n^2 + b\Delta M_n \), where \(a \) and \(b \) are constants, \(\psi_n \) is \(F_n \) measurable for each \(n \). In this case the condition (4) has the form

\[
E \exp\{a\Delta M_n^2 + (b+1)\Delta M_n\} = E \exp\{a\Delta M_n^2 + b\Delta M\},
\]

which is fulfilled if \(b = -\frac{1}{2} \) and for any constant \(a \) the class of martingale measures for \(S \) is defined by the density process

\[
\tilde{Z}_n = \tilde{Z}_{n-1} \frac{\exp\{a(\Delta M_n)^2 - \Delta M_n\}}{E \exp\{a(\Delta M_n)^2 - \Delta M_n\}} = \prod_{k=1}^{n} \frac{\exp\{a(\Delta M_k)^2 - \Delta M_k\}}{E \exp\{a(\Delta M_k)^2 - \Delta M_k\}} ,
\]

(5)

Let us consider the class of martingale measures \(Q^a \) \((a \in R)\) with density (5), i.e.

\[
\frac{dQ_a}{dP} = \tilde{Z}_N = \prod_{k=1}^{N} \frac{\exp\{a(\Delta M_k)^2 - \Delta M_k\}}{E \exp\{a(\Delta M_k)^2 - \Delta M_k\}} .
\]

(6)

Now we find the constant \(a^* \) and corresponding probability measure \(Q_{a^*} \) which minimizes the relative entropy. Recall that the relative entropy of probability measure \(Q \) with respect to probability measure \(P \) is defined as

\[
I(Q, P) = \begin{cases} E_P \left[\frac{dQ}{dP} \ln \frac{dQ}{dP} \right] , & \text{if } Q << P , \\
\infty , & \text{otherwise.}
\end{cases}
\]

So we have to find the constant \(a^* \) and corresponding measure \(Q_{a^*} \) with density (6) for which

\[
I(Q_{a^*}, P) \rightarrow \min .
\]

Let us computer \(E_P[\tilde{Z}_N \ln \tilde{Z}_N] \). In the beginning consider
\[A_k = E \exp \{a(\Delta M_k)^2 - \Delta M_k\} = \frac{1}{\sqrt{2\pi \Delta(\langle M \rangle_k)}} \int_R e^{ax - \frac{1}{2}x^2} e^{-\frac{x^2}{2\Delta(\langle M \rangle_k)}} dx = \frac{e^{\frac{\Delta(\langle M \rangle_k)}{2\Delta(\langle M \rangle_k)k}}}{\sqrt{1 - 2a\Delta(\langle M \rangle_k)}}, \quad (7) \]

where \(a < \frac{1}{2\Delta(\langle M \rangle_k)} \). So, we have that

\[\tilde{Z}_N \ln \tilde{Z}_N = \sum_{k=1}^{N} [(a(\Delta M_k)^2 - \Delta M_k) - \frac{\Delta M_k}{2}] A_k / \prod_{k=1}^{N} A_k - \ln A_k \]

Consider the mathematical expectation

\[E_P[\tilde{Z}_N \ln \tilde{Z}_N] = \sum_{k=1}^{N} \left[E \frac{\exp \{a(\Delta M_k)^2 - \Delta M_k\} - \frac{\Delta M_k}{2}}{A_k} - \ln A_k \right], \quad (8) \]

using (7) and (8) we obtain for the relative entropy the following representation

\[I(Q, P) = \sum_{k=1}^{N} \left[a(\Delta(\langle M \rangle_k) + \Delta(\langle M \rangle_k)/2 \right] + \ln \sqrt{1 - 2a\Delta(\langle M \rangle_k)}. \]

Now we find the parameter \(a \) for which the \(I(Q, P) \) takes minimum. Consider the derivative

\[\frac{dI(Q, P)}{da} = -8a^2 \sum_{k=1}^{N} \frac{\Delta(\langle M \rangle_k)^3}{2(1 - 2a\Delta(\langle M \rangle_k))^3} + 4a \sum_{k=1}^{N} \frac{\Delta(\langle M \rangle_k)^2}{2(1 - 2a\Delta(\langle M \rangle_k))^3} + \sum_{k=1}^{N} \frac{\Delta(\langle M \rangle_k)^2}{2(1 - 2a\Delta(\langle M \rangle_k))^3}. \quad (9) \]

Assume that \(\Delta(\langle M \rangle_k) = 1 \), i.e. \(\langle M \rangle_k = k \), then from (9) we obtain the quadratic equation for \(a \)

\[8a^2 - 4a - 1 = 0 \]

Solutions of this equation are \(a_1 = \frac{1 + \sqrt{3}}{4} \) and \(a_2 = \frac{1 - \sqrt{3}}{4} \). Recall that \(a < \frac{1}{2\Delta(\langle M \rangle_k)} \), if \(\Delta(\langle M \rangle_k) = 1 \), then \(a < \frac{1}{2} \) and the constant \(a^* = \frac{1 - \sqrt{3}}{4} \). This is the point of minimum, because \(\frac{d^2I(Q, P)}{da^2} > 0 \) in \(a^* \).

So, we have proved the following

Theorem. Let \(S_n = S_0 \exp \{M_n\} \), \(n = 1, ..., N, S_0 > 0 \), where \((M_n, F_n)_{0 \leq n \leq N} \), \(M_0 = 0 \) is the Gaussian martingale with quadratic characteristic \(\langle M \rangle_n = EM_n^2 \). In the class of martingale measures with densities defined by (6) the minimal relative entropy martingale measure has the density

\[\frac{dQ_n}{dP} = \tilde{Z}_N \prod_{k=1}^{N} E \exp \left[\frac{1 - \sqrt{3}}{4} (\Delta M_k)^2 - \frac{\Delta M_k}{2} \right]. \]

The work is supported by grant GNSF/STO 6/3-045.
Martingale Measures for the Geometrical Gaussian Martingale

M. Deli, T. Shvilis

Martingaluri zomebi geometriuli gausis martingalisa

REFERENCES

3. A.Н.Ширяев (1999), Основы стохастической финансовой математики, тт. 1, 2, М.

Received May, 2008