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ABSTRACT. The ground-state phase diagram of a two-leg spin ladder with alternating rung exchange

J,(n)=J" +(~=1)"&/ under the influence of a uniform magnetic field is studied. We have used the exact
diagonalization technique. In the limit where the rung exchange is dominant, we have mapped the model onto
the effective quantum sine-Gordon model with topological term and identified two quantum phase transitions

at critical magnetic fields 7/, and H_ from a gapped to the gapless regime. We have shown that for interme-

diate values of the magnetic field, at /7 < H < H, the magnetization curve of the system exhibits a plateau

at magnetization equal to the half of the saturation value. We also present a detailed numerical analysis of the
low energy excitation spectrum and the ground state magnetic phase diagram of the system using the Lanczos
method of numerical diagonalizations for ladders up to N=28 sites. We have calculated numerically the mag-
netic field dependence of the low-energy excitation spectrum, the magnetization, the on-rung spin-spin corre-

lation function. We have also calculated the width of the magnetization plateau and show that it scales as sV,

where the critical exponent varies from v =0.87+0.01. © 2008 Bull. Georg. Natl. Acad. Sci.

Key words: spin-Hamiltonian, two-leg spin ladder.

Introduction. Low-dimensional quantum magne-
tism has been the subject of intense research for decades.
Perpetual interest in the study of these systems is deter-
mined by their rather unconventional low-energy prop-
erties (see for a review [1]). An increased current activ-
ity in this field is connected with a large number of quali-
tatively new and dominated by the quantum effects phe-
nomena recently discovered in these systems [2,3] as
well as with the wide perspectives opened for the use of
low-dimensional magnetic materials in modern
nanoscale technologies.

The spin S=1/2 two-leg ladders represent one, par-
ticular subclass of low-dimensional quantum magnets
which also has attracted a lot of interest for a number of
reasons. On the one hand, there was remarkable progress
in recent years in the fabrication of such ladder com-

pounds [4]. On the other hand, spin-ladder models pose
interesting theoretical problems, since the excitation
spectrum of a two-leg antiferromagnetic ladder is gapped
and therefore, in the presence of a magnetic field, these
systems reveal an extremely complex behavior, domi-
nated by quantum effects. The magnetic field driven
quantum phase transitions in ladder systems were in-
tensively investigated both theoretically [5-15] and ex-
perimentally [16]. Usually, these most exciting proper-
ties of low dimensional quantum spin systems exhibit
strongly correlated effects driving them toward regimes
with no classical analog. Properties of the systems in
these regimes or “quantum phases” depend in turn on
the properties of their ground state and low-lying en-
ergy excitations. Therefore search for the gapped phases
emerging from different sources and study of ordered

© 2008 Bull. Georg. Natl. Acad. Sci.
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Fig. 1. Schematic plot of a ladder with alternating rung exchange

phases and quantum phase transitions associated with
the dynamical generation of new gaps is an important
direction in theoretical studies of quantum spin systems.

A particular realization of such scenario appears in
the case where the spin-exchange coupling constants
are spatially modulated. The spin-Peierls effect in spin
chains represents a prototype example of such behavior
[17]. In a recent paper the new type of spin-Peirels phe-
nomenon in ladder systems, connected with spontane-
ous dimerization of the system during the magnetiza-
tion process via alternation of rung exchange (see Fig.
1) has been discussed [18]. The Hamiltonian of the cor-
responding model is given by

H= Z[JHSW Speta —HS 1+

n,a
+J0 +(=1)"81S,, S, 2. (1)

n
where b—”nﬂ is a spin S=1/2 operator of rung n
(n=1,2,...N) and lega(=1,2). The intraleg and interleg

couplings are antiferromagnetic, J) >0,

Jf = JE[Ii&] >0 . As it was shown in [18] the model

shows rich ground state magnetic phase diagram and
describes a new mechanism for magnetization plateau
formation.

In [18] the model (1) has been studied analytically
in the limit of strong rung exchange and magnetic field

JI,H>> JH,LUE using the effective field-theory ap-

proach. In this limit, the model (1) is mapped onto the
spin S=1/2 XXZ Heisenberg chain in the presence of
both longitudinal uniform and staggered magnetic fields,
with the amplitude of the staggered component of the

magnetic field proportional to &/ ﬁ . The continuum-limit
bosonization analysis of the effective spin-chain Hamil-
tonian shows, that the alternation of the rung-exchange
leads to dynamical generation of a new energy scale in
the system and to the appearance of a magnetization
plateau at magnetization equal to one half of its satura-
tion value. It was shown that the width of magnetiza-

tion plateau scales as ¢, with v =4/5.
In this paper we continue our studies of the model
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(1) using the numerical analysis based on the exact di-
agonalization studies of finite systems with N=12, 16,
20, 24 and 28 sites. We calculate the spin gap, magneti-
zation, spin density distribution and the on-rung spin
correlations as a function of applied magnetic field. We
also computed the magnetization plateau scaling expo-
nent and showed that v =0.87+0.01 in the case of a
ladder with isotropic antiferromagnetic legs.
Derivation of the effective model. In this section
we briefly recall the results obtained within the analyti-
cal approach [18]. We restrict our consideration by the
limit of strong rung exchange and magnetic field

H,J| >> JH,dlf and follow the route already used to
study the standard ladder models in the same limit [7,8].
We start from the case J; =0, where an eigenstate of
H can be written as a product of on-rung states. At
each rung two spins form either a singlet state | s,? ) or
one of the triplet states: |¢°), |7, ) and |#,) with ener-
gies Eg =-3J /4, E)=J" /4,and Ef =J" /4% H ,
respectively. When H is small, the ground state consists
of a product of rung singlet states, whileat H ~ J| the

|t,) becomes almost degenerate with | S2> , while other

states have much higher energy. Integrating out the high
energy states and introducing the effective pseudo-spin

7 =1/2 operators, 7, which act on these states as
0 1,.0 +,.0 + -1 .0
sy == s, T lsh=l6) s =0;

1 _
nle) =451, alt)=ls), 7|6 =0,

we obtain the following effective Hamiltonian of the
anisotropic Heisenberg chain with anisotropy param-

eter A =1/2 in the uniform and staggered longitudinal
magnetic fields

— XX Yooy L7227 Yy
He’ﬁ' - Z{JH(Tn Tt 70 Tha t > Tn Tn+1)
n

—[hgy +hig -(-D)"1-7}}, )
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where h;ff =§Jﬂ and he(}f :h—Jf —J, /2. The per-

formed mapping allows to estimate the critical field H

corresponding to the transition from a gapped rung-sin-
glet phase to a gapless paramagnetic phase, the satura-

tion field H., , as well as the critical fields H. which
mark borders of the magnetization plateau at

M =0.5M
in terms of ladder parameters is to perform the Jordan-
Wigner transformation which maps the problem onto a
system of interacting spinless fermions [19]:

. The direct way to express H, and H ,

sat

Hsf = Z[t(a:zranﬂ + hC) +V- a;ana;HanJrl -
n

_(/u0+(_l)n/u1)'a;an]> (3)
where 1=V =J /2, K =%J” +hgﬁ» , M :helﬁ-, The

lowest critical field H,, ( H , ) corresponds to that value

of the chemical potential g, for which the band of fer-

mions (or holes, after the corresponding particle-hole
transformation) starts to fill up. In this limit we can
neglect the interaction term in (3) and easily obtain that

Ho=J = (I and H,, L (TP

To determine the critical fields f we use the con-

tinuum-limit bosonization approach.
Using the standard bosonized expressions for the
spin operators [20]

Tl = \/Eﬁxq)(x) +(=1)" isin V4K p(x), (4a)
T T

rt = e VKO 4 sin(VarK 9)] /27, (4b)

where ¢(x) and @(x) are dual bosonic fields and tak-
ing the corresponding to the anisotropy parameter
A=1/2 value of the spin-stiffness parameter

K =[2(1—arccosA/ )] =3/4, we obtain the follow-
ing bosonized Hamiltonian

Hyg = dx{%(axqﬁ)z +2(0,0) ——m»l’f sin(v37¢) -
0

3
-2 0.0 5
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The Hamiltonian (5) is the standard Hamiltonian
for the commensurate-incommensurate [21] transition
which has been intensively studied in the past using
bosonization approach [22] and the Bethe ansatz tech-
nique [23]. Below we use the results obtained in [22]
and [23] to describe the magnetization plateau and the
transitions from a gapped (plateau) to gapless paramag-
netic phases.

Let us first consider hfff =0. In this case the con-
tinuum theory of the initial ladder model in the mag-
netic field H =J, +J /2 is given by the quantum sine-

Gordon (SG) model with a massive term

~ hiff sin(v37¢). From the exact solution of the SG

model [24] it is known that the excitation spectrum of
the model (5) is gapped and the value of the renormalized

spin gap M, scales with its bare value as [25]

ergy behavior of the system is determined by the strongly
relevant staggered magnetic field (i.e. alternating part
of the rung exchange), represented by the term

hiﬁ sin(v/37¢) . In the ground state the field ¢ is pinned

in one of the minima of the staggered field potential

<0|sin(+/37@)|0>=—1. In view of (4a) we conclude
that this state corresponds to a long-range-ordered an-
tiferromagnetic phase of the effective Heisenberg chain
(2), i.e. to a phase of the initial ladder system, where
odd rungs have a dominant triplet character and even

rungs are predominantly singlets. At he 7 =0 the very

presence of the gradient term in the Hamiltonian (5)
makes it necessary to consider the ground state of the
SG model in sectors with nonzero topological charge.

The effective chemical potential = hgﬁﬁx(o tends to

change the number of particles in the ground state, i.e.
to create finite and uniform density of solitons; how-
ever, this implies that the vacuum distribution of the
field @ will be shifted with respect to the correspond-
ing minima. This competition between contributions of
the smooth and staggered components of the magnetic
field is resolved as a continuous phase transition from a

gapped state at h? 7 <M, to agapless (paramagnetic)

phase at hgff > M, [20]. The condition hgﬂ- =M,

gives two additional critical values of the magnetic field
£ 40 1 0 /5

As usual in the case of C-IC transition, the mag-
netic susceptibility of the system shows a square-root
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divergence at the transition points:
y(H)~(H; —-H)™"? for H<H, and
y(H)~(H-H})"? for H> H} . Thus from analyti-
cal studies we obtain the following magnetic phase dia-
gram for a ladder with alternating rung exchange. For
H<H

magnetization and vanishing magnetic susceptibility.

.1 » the system is in a rung-singlet phase with zero

For H > H_ some of the singlet rungs melt and the

magnetization increase as | H — H , . With further in-

crease of the magnetic field the system gradually crosses
to a regime with linearly increasing magnetization. How-
ever, in the vicinity of the magnetization plateau, for

H < H_ this linear dependence changes again into a
square-root behavior M =0.5M, —H_  —H . For

fields in the interval between H, < H < H_ the mag-

netization is constant M =0.5M ,,. At H > H_ the

magnetization increases as M ~0.5M ,, ++H - H_ ,
then passes again through a linear regime until, in the
vicinity of the saturation field H_,, it becomes

M~M,, —\H,,—H (seeFig.2).

The width of the magnetization plateau is given by

Numerical Results. Below in this paper we check
predictions based on the analytical treatment using the
exact diagonalizations approach for finite ladders with
the number of sites N=2L=12,16, 20,24,28 . We apply
AM
Mat

5

T

H - +

a He o He Ha
Fig. 2. Schematic drawing of the magnetization (in units of M_,,
two-leg isotropic ladder with alternating rung exchange as a
function of the external magnetic field.

)ofa
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Energy gap

the Lanczos method and calculate numerically the mag-
netic field dependence of the low-energy excitation spec-
trum, magnetization and the on-rung spin-spin correla-
tion function.

1. The Energy Gap. First, we have computed the
three lowest energy eigenvalues of L=6, 8, 10 ladders
with J; =1.0, J =55 and &/ =1.0. In Fig. 3, we

have plotted results of these calculations. We determine
the excitation gap in the system as the difference be-
tween the first excited state and the ground state. Asis
clearly seen from Fig.3 at zero magnetic field the exci-

tation spectrum of the system is gapped. For H = 0 the
energy gap decreases linearly with A and vanishes at

H=H, . The spectrum remains gapless for

H,. <H<H_ and once again becomes gapped for

H_<H<H].At H=H_, the spectrum becomes

gapless and remains gapless up to H = H_, , where the

gap opens once again and for a sufficiently large field
becomes proportional to H. Using the results for finite
ladders we obtain the following extrapolated to the limit

L — o values of critical fields: H, =4.48%£0.01,

H_  =532£0.01, H =687+0.01 and

H_, =7.76+0.01. It is straightforward to check that

the exact values of the critical fields obtained from nu-
merical studies of the finite ladders are very close to
their values estimated analytically .
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Fig. 3. Excitation gap as a function of the magnetic field for J; =1.0,

J1 =5, J| =6 and different ladder lengths. The inserts show

enlarged version in the vicinity of transition points.
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Fig. 4. Magnetization M” as a function of the applied magnetic field
HJ=10,J, =5, J| =6 and different ladder lengths.

2. Magnetization curve. To study the magnetic or-
der of the ground state of the system, we start with the
magnetization process. We have implemented the
Lanczos algorithm on the finite ladders (L=6, 8, 10, 12,
14) to calculate the lowest energy state. The magnetiza-
tion along the field axis is defined as

z 1 L z z
M =ZZ<0|(SM +87,)]0> (6)
n=l1

where the notation <0]...|0> represent the ground
state expectation value. In Fig. 4 , we have plotted the

magnetization M? as a function of the external mag-
netic field 4, for J; =1, and for rung exchanges J| =5,
J| =6 and different lengths L=6, 8, 10, 12.

As we observe, the numerical data clearly shows
the existence of three plateaus in the magnetization

curve,at MZ =0, M*=0.25 and M* =0.5.
3. Intra-rung correlations. An additional insight
into the nature of different phases can be obtained by

studying the on-rung correlations. We define the on-
rung spin correlation function for even and odd sites, as

L/2

2 - -
dy =Zz< 018120 S20m 10> and
m=1
o L2 . .
d; =Zz< 0181 2m1 82 2me1 10> 7
m=1

taking the sum over even or odd sites, respectively. In
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Fig.5 we have plotted the d; and d, as a function of

the magnetic field /4, for J =1, and for rung exchanges
J =5 and J] =6 for a ladder of length L=10. As is

seen from this figure, at / < H , spins on all rungs are

in a singlet state d; =d; =-0.75, while at H > H ,
the on-rung correlation function is equal on even and
odd rungs and is slightly less than the saturation value
d? =d =0.25. Deviation from the saturation values -

0.75 and 0.25 reflects the weak effects of quantum fluc-
tuations.
On the other hand, for intermediate values of the

magnetic field, at H,, < H < H_, the data presented in

Fig.5 provides us with an unique possibility to trace the
mechanism of singlet-pair melting with increasing mag-

netic field. At H slightly above H, the on-rung sin-
glets start to melt in all rungs simultaneously and al-
most with the same intensity. With further increase of
H, melting of weak rungs gets more intensive; however,
at H = H_ the process of melting stops. As it is seen in
Fig.5, weak rungs are polarized; however, their polar-
ization is far from the saturation value d° ~ 0.1, while
the strong rungs still manifest strong on-site singlet fea-
tures with d¢ ~-0.62. At H>H + strong rungs start
to melt intensively while the polarization of weak rungs

increases slowly. Finally at H = H,, both, even and

T 0.25

-0.25

Fig. 5. The on-rung spin correlation functions for even (squares) and
odd (triangles) rungs as a function of the applied field H for

L=10 ladder with rung exchange parameters J; =1.0, J| =5

and J] =6.
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Fig. 6. The spin distribution in the GS for the ladder with J; =1,

[t
n

J1 =5, J{ =6 asa function of the rung number for

magnetization corresponding to plateau M~ =0.5M ,, .

odd rung subsystems reach an identical, almost fully
polarized state. Note that the fluctuations in on-rung

correlations, increase precisely in d; at H <H_ and
decreasein d¢ at H > H_ which reflects the enhanced
role of quantum fluctuations in the vicinity of quantum
critical points.

To complete our description of the phase at magne-
tization plateau with M =0.5M,, we have calculated
the rung-spin distribution in the ground state

z 1 z z
M (n):5<O|S,,1+S,12)|0> ®)

In Fig. 6 we have plotted the spin distribution in
the ground state of a ladder with rung-exchange param-
eters J; =1.0, J =5, J| =6 asa function of the rung
number “n” for a value of the magnetic field correspond-
ing to the plateau at M =0.5M,,. The results of the
local magnetization of the different rungs are obtained
with extrapolating on the thermodynamic limit 7, — oo .
As we observe, the rung-system shows a well pronounced
modulation of the on-rung magnetization, where mag-

netization on odd rungs is larger than on even rungs
and this spin distribution remains almost unchanged

within the plateau for H, < H < H} .

Scaling properties of the magnetization plateau.
To find an accurate estimate on the critical exponent
characterizing the width of the magnetization plateau

on the parameter § we have computed the critical fields
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Fig. 7. Width of the magnetization plateau as a function of parameter

Sfor 0.01<5<0.1 in the case of ladder with J? =10.

Hf for finite ladder systems with Jﬂ =10, L =6, 8,

10, 12, 14 and for different values of the parameter &
and extrapolate their values corresponding to the ther-

modynamic limit L — o0, To calculate the critical ex-
ponent v, we have plotted in Fig. 7, the log-log plot of

the plateau width versus & . We found that the best fit
to our data (using the equation H) —H, =(&J%)")
yields v =0.87£0.01.

Conclusion. We have studied the ground state mag-
netic phase diagram of a spin S=1/2 two-leg ladder with
alternating rung-exchange using the Lanczos method
of numerical diagonalizations. We have shown that the
rung-exchange alternation leads to generation of a gap
in the excitation spectrum of the system at magnetiza-
tion equal to the half of its saturation value. As a result
of this additional energy scale formation the magneti-
zation curve of the system M(H) exhibits a plateau at

M =0.5M . The width of this plateau, is proportional

sat
to the rung-exchange alternation &/ E andscales as 5",

where v =0.87+0.01. The obtained numerical results
are in an excellent agreement with estimations obtained
within the analytical studies.
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