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1. Introduction

Let (X, A, 1) be a probability space and A,, A, = A be c-algebras. A regular conditional probability on A,
associated with u relative to A, is by definition a mapping p:.A,xX —[0,1], which has the properties:
(RCP1) for a fixed x€ X the set function p(-,x) is a probability measure on A,

(RCP2) for a fixed 4 € A, the function p(4,-) is measurable with respect to A,
(RCP3) #(ANA) = [ p(ADdu). VA Ay, Vi e Ay

This notion was presented implicitly in [1, Theorem 3.1], as well as in [2, (iii), p. 389] (cf. also [3], [4] and [5, p.
624]). In [1,2] it was claimed that a regular conditional probability on A associated with y relative to A, exists
whenever A, is countably generated. However, in [3] it was shown that there exist countably gencrated c-algebras

A and A, such that a regular conditional probability on .A associated with x relative to .4, does not exist.
Explicitly, the concept of a regular conditional probability named the conditional probability distribution relative to
A, (in our notation), was introduced in [5, Ch.I, §9 (p. 27)]. It secems that the term “regular conditional probability”

appeared in [6], where the first general existence result was obtained.
We deal also with the notion of a regular conditional probability relative to a measurable mapping, which is
closely related with the concept of a regular conditional probability relative to a c-algebra. Consider a measurable

space (¥, F) and a measurable mapping 77 : X — Y with the distribution g, := o n ' write A, = {7 '(B):Be F}.
A regular conditional probability on A, associated with u relative to the mapping n is by definition a

mapping q:.A,xY —[0,1] which has the properties:

(MRCP1) for a fixed yeY the set function ¢ (-, y) is a probability measure on A,

(MRCP2) for a fixed 4 € A, the function q(4,-) is measurable with respect to F,
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(MRCP3) #(AN7 ' (B) = | q(A.»)du,(»). VAe Ay, VBeF.

The notions of regular conditional probability relative to a o-algebra and relative to a measurable mapping are
compared in Proposition 3.5. We discuss also some results about uniqueness of regular conditional probabilities.

A disintegration of u on A with respect fo n is by definition a mapping q:.AxY —[0,1] which has the properties:

(Dis1) for a fixed ye ¥ the set function ¢ (-, y) is a probability measure on A,
(Dis 2) for a fixed 4 ¢ A the function g(4,-) is measurable with respect to F,
(Dis 3) there exists N e F with z,(N)=0 suchthatforall ye'\N wehave {yj€ 7 andforeachfixed ye '\ N

the probability measure ¢ (-, ) is concentrated on the “fibre’ 77*1({ ) (e g(X\ 77’1({ 1, =0),

(Dis4) w(D= [ q(Ay)du, (). VAdeA,

We note that for this concept, instead of the name “disintegration” the names regular conditional probability
distribution given n |7, p. 146] or conditional measure |8, p. 158] are also used.

Usually, disintegration is defined and studied in the context of topological spaces [9]. We refer the interested
reader to the works [10-16, 19] related with disintegration. In [17] disintegrations of Gaussian measures on Banach
spaces with respect to continuous linear mappings are investigated.

We show that whenever disintegration ¢ on A with respect to # exists, a regular conditional probability on 4
associated with u relative to 7 exists as well and it coincides with g (see Proposition 4.2, in which the case of validity
of the converse statement is also included).

2. Measurable mappings and transition probabilities.

Let Y'be a set, (¥, F) be a measurable space; for a mapping 7 : X —1 wewrite A, : = (' (F):FeF}. If Ais

a o-algebra of subsets of X, then the mapping 7 will be called (A, F)-measurable, if A, cA.

For a topological space Z we denote B (Z) the Borel o-algebra of Z.

If (X, A) is a measurable space and Z is a topological space, then a mapping 7 : X — Z will be called A-
measurable, if it is (A, B (£))-measurable.

If X and Z are topological spaces, then a mapping 7 : X — Z will be called Borel measurable, if it is (B (X),

B (Z))-measurable.
A topological space Z is called Polish, if it is homeomorphic to a complete separable metric space.
We need the following known statement a proof of which can be seen in [18, p. 98] and [19, p. 31].

Lemma 2.1. Let X be a set, (Y, F) be ameasurable space and 11 : X —Y be amapping. If Z is a Polish space and

[ X>ZisaA ”—measurable mapping, then there exists a F-measurable mapping g : Y — Z suchthat f=gon.

Remark 2.2. In case of (¥, F)= (R”, B(R"™)and Z=R this lemma coincides with [5, Supplement, Theorem 1.5, p.
603]. The case of a general (¥, 7) and Z =R is contained in [20, Lemma 1.1.5, p. 14]. In [19, p. 30] Lemma 2.1 is called
Doob-Dynkin lemma. An extensive discussion of the related results is contained in [21, Ch.3, §11, pp. 144-151].

Let (X, A) be a measurable space, 1 be a positive measure on A, (¥, F) be a measurable spaceand 7 : X —> Y be

a (A, F)-measurable mapping. It is easy to see that the set function x, defined on F by the equality

My (B) = u(n'(B)). VBe F is a positive measure. The measure 4, is called the image of p with respect to n.
We will frequently use the next known statement (see, ¢.g. [22, §39, Theorem CJ).
Lemma 2.3. Let (X, A, 1) be a measure space, (Y, F) a measurable space, 1. X =Y be a (A, F)-measurable

mapping, M, be the image of uwith respect to nand g :Y — C be a F-measurable function. Then:
(1) gELl(Y,f,,U”) = gOUELl(X’A’/u)'
@) If ge LLi(X.F.u,), then the following change of variable formula holds:
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fﬂ,l (81N u(x) = ng( Wdu,(y). VBeF.

Let (X, A) and (Y, F) be measurable spaces. A mapping ¢g:AxY —[0,1] will be called a transition probability
relative to (X, A) and (Y, F) if it has the following properties:

(TP1) for a fixed y e ¥ the set function g (-, ) is a probability measure on A,
(TP2) for a fixed 4 € A the function g(4,-) is measurable with respect to F.

For non-empty sets X, ¥ and a set FCXxY we write E  :={aeX:i(a,y)eE}, yel and
E_  :={beY:(x,h)eE}, xeX. For measurable spaces (X, A) and (¥, F) we denote by A® F the c-algebra of
subsets X xY generated by {AxF:4e A, FeF).

Lemma 2.4. Let (X, A) and (Y, F) be measurable spaces, E€c AQF be aset, n:X =Y be a mapping,

Y,:=n(X) and q: AxY —[0,1] be a transition probability relative to (X, A) and (Y, F).
Suppose further that: either,
(1) 7 is (A F)-measurable and there exists Cc(Y\Y)x(Y\Y,) such that Ay UCe FOF where
Ay ={(v.y) i yely;,
or
i) gr(m)={(x,7(x))  xe X} e AQF.
Then {i) = (ii) [23, Theorem 3] and the following statements are true:
(@ E,eA vyeY, E eF, VxeX and {n(x)}eF, VxeX.

(b) The function y+>q(E.,.y) is well-defined and F-measurable.

(¢) The function y+>q (7771({ ¥}),v) is well-defined and F-measurable.
Proof. (a) The first two statements are well known (see e.g. [22, §34, Theorem A]). The last statement follows from
the second one (in fact, for £=gr(n) and x€X we have {n(x)}=E € F).

(b) By (a) we have £ , € A, Yy eY, hence the function y— fz(¥) = q(E ,.y) iswell-defined. If £ =AxF is
a measurable rectangle, then f;.(y) =q(4. V1 (y), Vyel and so, our function is F-measurable. From this the
measurability of f;; for an arbitrary £e A® F follows in the classical way (see e.g. proof of Theorem Bin [22, §35]).
(c) follows from (b) applied to £ =gr(n) (as £, = 'y, Yyel). O

Remark 2.5. In connection with this lemma it is worthwhile to note:

(DIf A, ={(y.y): ye¥}e F®F, then for any (A F)-measurable 7 : X — ¥ we have gr(n)e A®F (this
follows from implication (i) = (ii) of Lemma 2.4).

(2) If X, Y are Polish spaces and 77 : X — Y is a mapping with gr(n)e B(X)® B(Y), then 7 is Borel measurable
[24]. More general ‘topology free’ versions of this statement are known too (see, e.g. [21, Theorem 11.4.1, p.81]).

(3) Itis not clear whether Lemma 2.4 (¢) remains true, if merely 77 is (A, F)-measurable and {r(x)}e F, Vxe X.

3. Regular conditional probabilities.

Let (X, A, 1) be a probability space and let A, 4, c.A be c-algebras. Consider a measurable space (¥,F ) and
a (A, F)-measurable mapping 77 : X — Y . It is clear that a regular conditional probability ¢ on A, associated with u

relative to #is a transition probability q:. A4, xY —[0,1] relative to (X, A, ) and (X,F) that has the additional property
(MRCP3).
Proposition 3.1. Let (X, A, 1) be a probability space, (Y,F) be a measurable space, n:X —7Y be a (A F)-
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measurable mapping, q. AxY —[0,1] be a regular conditional probability on A associated with u relative to n
and Ee AQF .
Then the mapping x— (x,7(x)) is (A, A®F) -measurable, the function y+— q(E ,.») is well-defined and

F-measurable and the following equality is true.
(MRCP4) pixe X:(x.n(x) e L= IY q(E. ;. V)du, (y)

Proof. The measurability of x> (x,77(x)) canbe verified in a standard way. The function y — ¢ (E. ,,,») iswell-
defined and F-measurable by Lemma 2.4(b). If E=AxF is a measurable rectangle, then
{xeX:(x,;n(x)e E}y=A4N 77’1(F) and q(E. ,,,y)=q(A4,»)1p(y), Vyel ;so,inthis case (MRCP4) coincides with

(MRPC3). From this the validity of (MRCP4) for an arbitrary £e A® F can be derived in the classical way (cf. proof

of Theorem Bin [22, §35]).0O0
We recall that a c-algebra A is called countably generated if there exists at most countable set Dc.A which
generates A.

Proposition 3.2. Let (X, A, ) be a probability space and let A, C A be a countably generated c-algebra.
Consider a measurable space (Y, F) and a (A, F)-measurable mapping n: X ->Y .

If a regular conditional probability on A, associated with u relative to n exists, then it is essentially unique
in the following natural sense:

If q,, q, are regular conditional probabilities on A, associated with u relative to n, then there exists a set

NeF such that p,(N)=0 and
CII(ADy):CIZ(ADy)D ver\N: VAGAO'

Proof. Since the algebra generated by at most countable D is at most countable, we can suppose that A, is

generated by an at most countable algebra £ ={£,, E,....} © A,. Fix a natural number ». Since by (MRCP3) we have

[, aEpdpy () = wENE B) = [ 2(E, ), (v) VBeF,

there is N, € F such that z, (N,)=0 and ¢,(E,.y) =¢,(E,.») Vel \N,. LetN = UN, . Then Ne F and

n=1
Hy,(N)=0 and ¢,(E.y)=q,(E,y) Vyel\N, VEe&. Therefore, fora given y €Y\ N the probability measures
q,(~y) and ¢, (- y) coincide on the algebra & generating A, and consequently, they coincide on A, too. O

Proposition 3.3. Let (X, A, 1) be a probability space and let A, A, c. A be c-algebras.

(@) If' A, is countably generated and a regular conditional probability on A, associated with p relative to A,
exists, then it is essentially unique in the following natural sense:
If p,, p, are regular conditional probabilities on A, associated with u relative to A,, then there exists a set

Ne A, such that u(N)=0 and

p(d,x)=p,(4,x), Vxe X\N, VAde A,.

(b) If a regular conditional probability p on A associated with u relative to A, exists and A, is countably
generated, then there exists a set Ne A, such that u(N)=0 and

P x)=1,(x), Vxe X\N, V4 €A,
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Proof. (a) Consider the measurable space (¥, F) := (X, A,)). Let 7:.X — X be the identity mapping. Then clearly

Py» P, are regular conditional probabilitics on A associated with x relative to 7; hence (a) follows from Proposition
32.

(b) Define p'(4y,x)=1, (x), 4; € A;, x € X. Itis clear that the restriction of p to A; x.X" and p":A; x X —[0.1]
are regular conditional probabilities on A, associated with u relative to A, . Since A, is countably gencrated, we
can apply (a) and get the existence of a set Ne A, such that x(N)=0 and p(4,x)=p'(4.x), Vxe X\ N,
V4, € A, O

Remark 3.4. (1) An analogue of Proposition 3.3() in [2; 4(iv)] is proved for the case when the c-algebras A and

A, are both countably generated.
(2) A regular conditional probability p on A associated with u relative to A, is called proper if

P4 x)=1,(x),VxeX, V4 e A;. In [25] it is shown that a regular conditional probability p on .A associated with

urelative to A, may exist, the c-algebras A and A, may be both countably generated, but a proper regular conditional
probability p on A associated with x relative to A, may not exist. The proper regular conditional probabilities are
studied in [26,27]; in [27] an example is given showing that Proposition 3.2(h) may not be true when A, is not
countably generated.

Proposition 3.5. Let (X, A, 1) be a probability space, (Y, F) be a measurable space, n:X —Y be a (AF)-

measurable map and A, = n(F).

(a) If a regular conditional probability q on A associated with u relative to 1 exists, then a regular conditional
probability p on A associated with u relative to A, exists as well and it can be obtained by the equality:
pAx)=q(4n(x), Ae A xeX.

(b) If a regular conditional probability on A associated with urelative to A, exists and n(X) is p, -measur-
able, then a regular conditional probability on A associated with u relative to 1 exists as well.

Proof. (a) Itis clear that p is a transition probability relative to (X,.A) and (X, A, ). Fix 4€ A and Be F . Bythe

change of variable formula we can write:
[ 105y PADYAR) = [ a(nN = [ a(4.9)dp, ().
By (MRCP3) we have:
#UND ' B) = [ a(4.) du, ().
Consequently,

-1 _
uANT B =] |, pAX)dR).

Since 4. A and B e F are arbitrary, the last equality means that p is a regular conditional probability associ-

ated with urelative to A, .

(b) Let p: Ax X —[0.1] be a regular conditional probability associated with s relativeto A, . Fix 4 e A . Since
the function p(4,-) is A,] -measurable, by Lemma 2.1, there exists a F -measurable function g, :Y —[0,1] such
that p(4,x)=g,(n(x)), VxeX. By the assumption, 7 (X) is 4, -measurable. Therefore, there exists }; € 7 such
that ¥} c 7(X) and , (¥;)=1. Define a mapping q:AxY —[0.1] by the equalities: g(4.y)=g,(y), yel}, 4e A

and g(4,y) = u(A). ye¥\Y,. Ae A,
Let us see now that ¢ is a transition probability relative (X,.4) and (¥, F).
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For afixed 4 A the function g(4,-) is F-measurable, because g, isand ¥, € F .

Fixnow y e Y] and let us see that g (-, y) is a probability measure on A. Since y €1, and ¥, 7 (X), there exists
xe X with 77 (x) =y . Then by the definition of ¢ we have ¢ (4, y) =p (4.x), VA e A . Since p (-, x) is a probability
measure on .4, the set function g (-, y) is as well.

Note that g satisfies (MRCP3). Fix 4 A and Be F. As u, (1) =1, we can write using the change of variable
formula and (RCP3) for p:

[yadndu, =] a@ndu, =], a@ne)du) =

BN, (BN1Y)

= [ s oy PADAC)= (AN BNE) = (AN (B)).

Consequently, g is a regular conditional probability associated with u relative to 7. O
Remark 3.6. We note in connection with Proposition 3.5(b) that for a given measurable mapping the condition
“nX) is u,-measurable” may not be satisfied even if (¥, F)=(R, B(R)). A probability space (X,.A,u) (also the

measure u itself) is called perfect, if for every A-measurable 7:X — R one has that 7(X) is £, -measurable. This

concept was introduced in [28] and perfectness was even included as a postulate in the definition of a probability
space. A substantial study of perfect measures was made in [29].

4. Disintegration of general probability measures.

In this section we clarify the relationship between regular conditional probabilities and disintegrations.

Let (X,.A, ») be a probability space, (¥, F) be a measurable space and 7:X —Y be a (A,F)-measurable

mapping. It is clear that a disintegration of x with respect to 7 is a transition probability relative to (X, A) and (Y, F)
with the additional properties (Dis3) and (Dis4).

Lemma 4.1. Let (X, A, 1) be a probability space, (Y, F) be a measurable space and 1. X —Y be a (A,F)-
measurable mapping for which there exists a disintegration q of y on A with respect to n. Then n(X) is M, -

measurable.
Proof. Let N be as in (Dis3) and ¥, = Y N. Then ¥, eF and g, (¥,)=1. Fix arbitrarily ye ¥ ; since

q(ffl({ y1.) =1, we get that 77*1({ y3y) =< . Consequently, yen(X) and hence, ¥, c7(X). The last inclusion
(together with ¥, € 7 and g, (¥,)=1) implies 4, -measurability of 7 (X). O
Proposition 4.2. Let (X, A, u) be a probability space, (Y, F) be a measurable space and 1:X =Y be a (A,F)-

measurable mapping.
(a) (¢f [23, Theorem 2]) If q is a regular conditional probability on A associated with u relative to n and

gr(me A®F, then q is a disintegration of uon A with respect to n and n(X) is M, -measurable.

() If q is a disintegration of p on A with respect to n, then q is a regular conditional probability on A
associated with u, relative to n.
(¢) If A is countably generated and q,,q, are disintegrations of yon A with respect to 1, then there exists a set

NeF such that j,,(N)=0 and

‘h(Aa)/):‘Iz(AaJ’)a vxEY\N, VAGA

Proof. (o) Clearly, ¢ has the properties (Disl), (Dis2) and (Dis4). It remains to show that ¢ has the property (Dis3)
as well.

Since gr(n)e A® F, we can apply Proposition 3.1 for £ = gr(n) and get
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L= plxe Xe(en() € By = [ a(E,,.v)du, )= [ atn” ' (h.»)du, 0.

Hence, u,{ye¥ g ' ({¥}).y) =13 =1. Therefore, g is a disintegration and then 4, -measurability of 7(X)
follows from Lemma 4.1.

(b) (cf. |7, pp. 146-147])Let Ac A and Be F,Nbeasin(Dis3)and yeY /N . Since q(n’l({y}),y) =1, wecan

write g(AN7 ' (B), ) = (4, W11 . As 1, (N) =0,

[LaAndw, =] allymdu, =] a@N7 ' B).0)du, ()= aNn ™ B).y)du, ().
ie., IB q(A, y)du, () = IY q(AN7 " (B).»)du, (). From this and (Dis4) we get

[,aldu, =] ais0)du,) =] a0y (B).y)duy () = w(AN7 " (B).

Hence, ¢ is a regular conditional probability on A associated with u relative to 7.

(c) By (b) we have that g, g, are regular conditional probabilities on A associated with 4 relative to 7. Since A
is countably generated, the conclusion follows from Proposition 3.2.

Remark 4.3. We note:

(1) Proposition 4.2(a) is for (¥, F) = (R,B(R)) contained in [30, Lemma 3.1, p.290]; however, the proof presented
there is not quite clear.

(2) Proposition 4.2(a) is not true in general (even if {y;e F, Vy el ). Infact, let (X, A, x) = ([0,1],B([0.1]), 1)
(where # stands for the Lebesgue measure), (Y,F) = (]0,1], F), where F is c-algebra generated by finite subsets of
[0,1]; put n(x)=x, Vxe[0,1]. Then ¢:AxY —[0,1], defined by the equality g(4,y)=u(d), 4e A, ye?, isa

regular conditional probability on .A associated with u relative to 7. However, q(ffl({ ¥}, v)=0, Vye¥. Hence, g

is not a disintegration of 4 on A with respect to 7.
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