Mathematics

Regular Conditional Probabilities and Disintegrations

Nicholas Vakhania*, Vazha Tarieladze**

ABSTRACT. We clarify the connection between: (1) regular conditional probabilities relative to a sigma-algebra, (2) regular conditional probabilities relative to a mapping and (3) disintegrations with respect to a mapping. © 2007 Bull. Georg. Natl. Acad. Sci.

Key words: regular conditional probability, disintegration.

1. Introduction

Let (X, \mathcal{A}, μ) be a probability space and $\mathcal{A}_0, \mathcal{A}_1 \subset \mathcal{A}$ be σ -algebras. A regular conditional probability on \mathcal{A}_0 associated with μ relative to \mathcal{A}_1 is by definition a mapping $p: \mathcal{A}_0 \times X \to [0,1]$, which has the properties:

(RCP1) for a fixed $x \in X$ the set function $p(\cdot, x)$ is a probability measure on A_0 ,

(RCP2) for a fixed $A \in A_0$ the function $p(A, \cdot)$ is measurable with respect to A_1 ,

(RCP3)
$$\mu(A \cap A_1) = \int_{A_1} p(A, x) d\mu(x), \quad \forall A \in \mathcal{A}_0, \ \forall A_1 \in \mathcal{A}_1.$$

This notion was presented implicitly in [1, Theorem 3.1], as well as in [2, (iii), p. 389] (cf. also [3], [4] and [5, p. 624]). In [1,2] it was claimed that a regular conditional probability on \mathcal{A} associated with μ relative to \mathcal{A}_1 exists whenever \mathcal{A}_1 is countably generated. However, in [3] it was shown that there exist countably generated σ -algebras \mathcal{A} and \mathcal{A}_1 , such that a regular conditional probability on \mathcal{A} associated with μ relative to \mathcal{A}_1 does not exist. Explicitly, the concept of a regular conditional probability named *the conditional probability distribution relative to* \mathcal{A}_1 (in our notation), was introduced in [5, Ch.I, §9 (p. 27)]. It seems that the term "regular conditional probability" appeared in [6], where the first general existence result was obtained.

We deal also with the notion of a regular conditional probability relative to a measurable mapping, which is closely related with the concept of a regular conditional probability relative to a σ -algebra. Consider a measurable space (Y, \mathcal{F}) and a measurable mapping $\eta: X \to Y$ with the distribution $\mu_{\eta} := \mu \circ \eta^{-1}$; write $\mathcal{A}_{\eta} = \{\eta^{-1}(B) : B \in \mathcal{F}\}$.

A regular conditional probability on A_0 associated with μ relative to the mapping η is by definition a mapping $q: A_0 \times Y \to [0,1]$ which has the properties:

(MRCP1) for a fixed $y \in Y$ the set function $q(\cdot, y)$ is a probability measure on \mathcal{A}_0 ,

(MRCP2) for a fixed $A \in A_0$ the function $q(A,\cdot)$ is measurable with respect to \mathcal{F} ,

^{*} Academy Member, Niko Muskhelishvili Institute of Computational Mathematics, Tbilisi

^{**} Niko Muskhelishvili Institute of Computational Mathematics, Tbilisi

(MRCP3)
$$\mu(A \cap \eta^{-1}(B)) = \int_{B} q(A, y) d\mu_{\eta}(y), \quad \forall A \in \mathcal{A}_{0}, \ \forall B \in \mathcal{F}.$$

The notions of regular conditional probability relative to a σ -algebra and relative to a measurable mapping are compared in Proposition 3.5. We discuss also some results about uniqueness of regular conditional probabilities.

A disintegration of μ on A with respect to η is by definition a mapping $q: A \times Y \rightarrow [0,1]$ which has the properties:

(Dis 1) for a fixed $y \in Y$ the set function $q(\cdot, y)$ is a probability measure on \mathcal{A} ,

(Dis 2) for a fixed $A \in \mathcal{A}$ the function $q(A,\cdot)$ is measurable with respect to \mathcal{F} ,

(Dis 3) there exists $N \in \mathcal{F}$ with $\mu_{\eta}(N) = 0$ such that for all $y \in Y \setminus N$ we have $\{y\} \in \mathcal{F}$ and for each fixed $y \in Y \setminus N$ the probability measure $q(\cdot, y)$ is concentrated on the 'fibre' $\eta^{-1}(\{y\})$ (i.e. $q(X \setminus \eta^{-1}(\{y\}), y) = 0$),

(Dis 4)
$$\mu(A) = \int_{Y} q(A, y) d\mu_{\eta}(y), \quad \forall A \in \mathcal{A}.$$

We note that for this concept, instead of the name "disintegration" the names regular conditional probability distribution given η [7, p. 146] or conditional measure [8, p. 158] are also used.

Usually, disintegration is defined and studied in the context of topological spaces [9]. We refer the interested reader to the works [10-16, 19] related with disintegration. In [17] disintegrations of Gaussian measures on Banach spaces with respect to continuous linear mappings are investigated.

We show that whenever disintegration q on \mathcal{A} with respect to η exists, a regular conditional probability on \mathcal{A} associated with μ relative to η exists as well and it coincides with q (see Proposition 4.2, in which the case of validity of the converse statement is also included).

2. Measurable mappings and transition probabilities.

Let X be a set, (Y, \mathcal{F}) be a measurable space; for a mapping $\eta: X \to Y$ we write $\mathcal{A}_{\eta}:=\{\eta^{-1}(F): F \in \mathcal{F}\}$. If \mathcal{A} is a σ -algebra of subsets of X, then the mapping η will be called $(\mathcal{A}, \mathcal{F})$ -measurable, if $\mathcal{A}_{\eta} \subset \mathcal{A}$.

For a topological space Z we denote $\mathcal{B}(Z)$ the Borel σ -algebra of Z.

If (X, A) is a measurable space and Z is a topological space, then a mapping $\eta: X \to Z$ will be called A-measurable, if it is $(A, \mathcal{B}(Z))$ -measurable.

If X and Z are topological spaces, then a mapping $\eta: X \to Z$ will be called *Borel measurable*, if it is $(\mathcal{B}(X), \mathcal{B}(Z))$ -measurable.

A topological space Z is called *Polish*, if it is homeomorphic to a complete separable metric space.

We need the following known statement a proof of which can be seen in [18, p. 98] and [19, p. 31].

Lemma 2.1. Let X be a set, (Y, \mathcal{F}) be a measurable space and $\eta: X \to Y$ be a mapping. If Z is a Polish space and

 $f: X \to Z$ is a \mathcal{A}_{η} -measurable mapping, then there exists a \mathcal{F} -measurable mapping $g: Y \to Z$ such that $f = g \circ \eta$.

Remark 2.2. In case of $(Y, \mathcal{F}) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ and $Z = \mathbb{R}$ this lemma coincides with [5, Supplement, Theorem 1.5, p. 603]. The case of a general (Y, \mathcal{F}) and $Z = \mathbb{R}$ is contained in [20, Lemma 1.1.5, p. 14]. In [19, p. 30] Lemma 2.1 is called *Doob-Dynkin lemma*. An extensive discussion of the related results is contained in [21, Ch.3, §11, pp. 144-151].

Let (X, \mathcal{A}) be a measurable space, μ be a positive measure on \mathcal{A} , (Y, \mathcal{F}) be a measurable space and $\eta: X \to Y$ be a $(\mathcal{A}, \mathcal{F})$ -measurable mapping. It is easy to see that the set function μ_{η} defined on \mathcal{F} by the equality $\mu_{\eta}(B) = \mu(\eta^{-1}(B))$, $\forall B \in \mathcal{F}$ is a positive measure. The measure μ_{η} is called *the image of* μ *with respect to* η . We will frequently use the next known statement (see, e.g. [22, §39, Theorem C]).

Lemma 2.3. Let (X, \mathcal{A}, μ) be a measure space, (Y, \mathcal{F}) a measurable space, $\eta : X \to Y$ be a $(\mathcal{A}, \mathcal{F})$ -measurable mapping, μ_{η} be the image of μ with respect to η and $g : Y \to \mathbb{C}$ be a \mathcal{F} -measurable function. Then:

- (1) $g \in L_1(Y, \mathcal{F}, \mu_n) \Leftrightarrow g \circ \eta \in L_1(X, \mathcal{A}, \mu)$.
- (2) If $g \in L_1(Y, \mathcal{F}, \mu_n)$, then the following change of variable formula holds:

$$\int_{\eta^{-1}(B)} g(\eta(x)) d\mu(x) = \int_{B} g(y) d\mu_{\eta}(y), \quad \forall B \in \mathcal{F}.$$

Let (X, A) and (Y, \mathcal{F}) be measurable spaces. A mapping $q: A \times Y \rightarrow [0,1]$ will be called a transition probability relative to (X, A) and (Y, \mathcal{F}) if it has the following properties:

- (TP1) for a fixed $y \in Y$ the set function $q(\cdot, y)$ is a probability measure on \mathcal{A} ,
- (TP2) for a fixed $A \in \mathcal{A}$ the function $q(A,\cdot)$ is measurable with respect to \mathcal{F} .

For non-empty sets X, Y and a set $E \subset X \times Y$ we write $E_{,y} := \{a \in X : (a,y) \in E\}$, $y \in Y$ and $E_{x,\cdot} := \{b \in Y : (x,b) \in E\}$, $x \in X$. For measurable spaces (X, A) and (Y, \mathcal{F}) we denote by $A \otimes \mathcal{F}$ the σ -algebra of subsets $X \times Y$ generated by $\{A \times F : A \in A, F \in \mathcal{F}\}$.

Lemma 2.4. Let (X, A) and (Y, F) be measurable spaces, $E \in A \otimes F$ be a set, $\eta : X \to Y$ be a mapping, $Y_0 := \eta(X)$ and $q: A \times Y \to [0,1]$ be a transition probability relative to (X, A) and (Y, F). Suppose further that: either,

- (i) η is $(\mathcal{A}, \mathcal{F})$ -measurable and there exists $C \subset (Y \setminus Y_0) \times (Y \setminus Y_0)$ such that $\Delta_{Y_0} \cup C \in \mathcal{F} \otimes \mathcal{F}$ where $\Delta_{Y_0} := \{(y, y) : y \in Y_0\},$
- (ii) $gr(\eta) := \{(x, \eta(x)) : x \in X\} \in A \otimes F$.

Then $\{i\} \Rightarrow (ii)$ [23, Theorem 3] and the following statements are true:

- (a) $E_{\cdot,v} \in \mathcal{A}, \forall y \in Y, E_{x,\cdot} \in \mathcal{F}, \forall x \in X \text{ and } \{\eta(x)\} \in \mathcal{F}, \forall x \in X.$
- (b) The function $y \mapsto q(E_{\cdot,y},y)$ is well-defined and \mathcal{F} -measurable.
- (c) The function $y \mapsto q(\eta^{-1}(\{y\}), y)$ is well-defined and \mathcal{F} -measurable.
- **Proof.** (a) The first two statements are well known (see e.g. [22, §34, Theorem A]). The last statement follows from the second one (in fact, for $E = gr(\eta)$ and $x \in X$ we have $\{\eta(x)\} = E_{x,\cdot} \in \mathcal{F}$).
- (b) By (a) we have $E_{y,y} \in \mathcal{A}$, $\forall y \in Y$, hence the function $y \mapsto f_E(y) = q(E_{y,y},y)$ is well-defined. If $E = A \times F$ is a measurable rectangle, then $f_E(y) = q(A,y)\mathbf{1}_F(y)$, $\forall y \in Y$ and so, our function is \mathcal{F} -measurable. From this the measurability of f_E for an arbitrary $E \in \mathcal{A} \otimes \mathcal{F}$ follows in the classical way (see e.g. proof of Theorem B in [22, §35]).
 - (c) follows from (b) applied to $E = gr(\eta)$ (as $E_{y} = \eta^{-1}(\{y\}), \forall y \in Y$). \square

Remark 2.5. In connection with this lemma it is worthwhile to note:

- (1) If $\Delta_Y = \{(y,y): y \in Y\} \in \mathcal{F} \otimes \mathcal{F}$, then for any $(\mathcal{A},\mathcal{F})$ -measurable $\eta: X \to Y$ we have $gr(\eta) \in \mathcal{A} \otimes \mathcal{F}$ (this follows from implication (i) \Rightarrow (ii) of Lemma 2.4).
- (2) If X, Y are Polish spaces and $\eta: X \to Y$ is a mapping with $gr(\eta) \in \mathcal{B}(X) \otimes \mathcal{B}(Y)$, then η is Borel measurable [24]. More general 'topology free' versions of this statement are known too (see, e.g. [21, Theorem II.4.1, p.81]).
 - (3) It is not clear whether Lemma 2.4 (c) remains true, if merely η is $(\mathcal{A}, \mathcal{F})$ -measurable and $\{\eta(x)\} \in \mathcal{F}, \forall x \in X$.

3. Regular conditional probabilities.

Let (X, \mathcal{A}, μ) be a probability space and let $\mathcal{A}_0, \mathcal{A}_1 \subset \mathcal{A}$ be σ -algebras. Consider a measurable space (Y, \mathcal{F}) and a $(\mathcal{A}, \mathcal{F})$ -measurable mapping $\eta: X \to Y$. It is clear that a regular conditional probability q on \mathcal{A}_0 associated with μ relative to η is a transition probability $q: \mathcal{A}_0 \times Y \to [0,1]$ relative to (X, \mathcal{A}_0) and (X, \mathcal{F}) that has the additional property (MRCP3).

Proposition 3.1. Let (X, \mathcal{A}, μ) be a probability space, (Y, \mathcal{F}) be a measurable space, $\eta: X \to Y$ be a $(\mathcal{A}, \mathcal{F})$ -

measurable mapping, $q: A \times Y \to [0,1]$ be a regular conditional probability on A associated with μ relative to η and $E \in A \otimes \mathcal{F}$.

Then the mapping $x \mapsto (x, \eta(x))$ is $(A, A \otimes F)$ -measurable, the function $y \mapsto q(E_{\cdot,y}, y)$ is well-defined and F-measurable and the following equality is true.

(MRCP4)
$$\mu\{x \in X : (x, \eta(x)) \in E\} = \int_{V} q(E_{\cdot,y}, y) d\mu_{\eta}(y)$$

Proof. The measurability of $x \mapsto (x, \eta(x))$ can be verified in a standard way. The function $y \mapsto q(E_{\cdot,y}, y)$ is well-defined and \mathcal{F} -measurable by Lemma 2.4(*b*). If $E = A \times F$ is a measurable rectangle, then $\{x \in X : (x, \eta(x)) \in E\} = A \cap \eta^{-1}(F)$ and $q(E_{\cdot,y}, y) = q(A, y)1_F(y)$, $\forall y \in Y$; so, in this case (MRCP4) coincides with (MRPC3). From this the validity of (MRCP4) for an arbitrary $E \in \mathcal{A} \otimes \mathcal{F}$ can be derived in the classical way (cf. proof of Theorem B in [22, §35]). \square

We recall that a σ -algebra \mathcal{A} is called *countably generated* if there exists at most countable set $\mathcal{D} \subset \mathcal{A}$ which generates \mathcal{A} .

Proposition 3.2. Let (X, \mathcal{A}, μ) be a probability space and let $\mathcal{A}_0 \subset \mathcal{A}$ be a countably generated σ -algebra. Consider a measurable space (Y, \mathcal{F}) and a $(\mathcal{A}, \mathcal{F})$ -measurable mapping $\eta: X \to Y$.

If a regular conditional probability on A_0 associated with μ relative to η exists, then it is essentially unique in the following natural sense:

If q_1 , q_2 are regular conditional probabilities on \mathcal{A}_0 associated with μ relative to η , then there exists a set $N \in \mathcal{F}$ such that $\mu_n(N) = 0$ and

$$q_1(A, y) = q_2(A, y), \forall y \in Y \setminus N, \forall A \in \mathcal{A}_0.$$

Proof. Since the algebra generated by at most countable \mathcal{D} is at most countable, we can suppose that \mathcal{A}_0 is generated by an at most countable algebra $\mathcal{E} = \{E_1, E_2....\} \subset \mathcal{A}_0$. Fix a natural number n. Since by (MRCP3) we have

$$\int_{B} q_{1}(E_{n}, y) d\mu_{\eta}(y) = \mu(E_{n} \cap \mu^{-1}(B)) = \int_{B} q_{2}(E_{n}, y) d\mu_{\eta}(y) \quad \forall B \in \mathcal{F},$$

there is $N_n \in \mathcal{F}$ such that $\mu_\eta(N_n) = 0$ and $q_1(E_n,y) = q_2(E_n,y)$ $\forall y \in Y \setminus N_n$. Let $N := \bigcup_{n=1}^\infty N_n$. Then $N \in \mathcal{F}$ and $\mu_\eta(N) = 0$ and $q_1(E,y) = q_2(E,y)$ $\forall y \in Y \setminus N$, $\forall E \in \mathcal{E}$. Therefore, for a given $y \in Y \setminus N$ the probability measures $q_1(\cdot,y)$ and $q_2(\cdot,y)$ coincide on the algebra \mathcal{E} generating \mathcal{A}_0 and consequently, they coincide on \mathcal{A}_0 too. \square

Proposition 3.3. Let (X, \mathcal{A}, μ) be a probability space and let $\mathcal{A}_0, \mathcal{A}_1 \subset \mathcal{A}$ be σ -algebras.

(a) If A_0 is countably generated and a regular conditional probability on A_0 associated with μ relative to A_1 exists, then it is essentially unique in the following natural sense:

If p_1 , p_2 are regular conditional probabilities on \mathcal{A}_0 associated with μ relative to \mathcal{A}_1 , then there exists a set $N \in \mathcal{A}_1$ such that $\mu(N) = 0$ and

$$p_1(A,x) = p_2(A,x), \ \forall x \in X \setminus N, \ \forall A \in \mathcal{A}_0.$$

(b) If a regular conditional probability p on A associated with μ relative to A_1 exists and A_1 is countably generated, then there exists a set $N \in A_1$ such that $\mu(N) = 0$ and

$$p(A_1, x) = 1_{A_1}(x), \forall x \in X \setminus N, \forall A_1 \in A_1.$$

Proof. (a) Consider the measurable space $(Y, \mathcal{F}) := (X, \mathcal{A}_1)$. Let $\eta: X \to X$ be the identity mapping. Then clearly p_1 , p_2 are regular conditional probabilities on \mathcal{A}_0 associated with μ relative to η ; hence (a) follows from Proposition 3.2

(b) Define $p'(A_1, x) = 1_{A_1}(x)$, $A_1 \in \mathcal{A}_1$, $x \in X$. It is clear that the restriction of p to $\mathcal{A}_1 \times X$ and $p' : \mathcal{A}_1 \times X \to [0, 1]$ are regular conditional probabilities on \mathcal{A}_1 associated with μ relative to \mathcal{A}_1 . Since \mathcal{A}_1 is countably generated, we can apply (a) and get the existence of a set $N \in \mathcal{A}_1$ such that $\mu(N) = 0$ and $p(A_1, x) = p'(A_1, x)$, $\forall x \in X \setminus N$, $\forall A_1 \in \mathcal{A}_1$.

Remark 3.4. (1) An analogue of Proposition 3.3(*b*) in [2; 4(iv)] is proved for the case when the σ -algebras \mathcal{A} and \mathcal{A}_1 are both countably generated.

(2) A regular conditional probability p on \mathcal{A} associated with μ relative to \mathcal{A}_1 is called *proper* if $p(A_1,x)=1_{A_1}(x), \ \forall x\in X, \ \forall A_1\in \mathcal{A}_1$. In [25] it is shown that a regular conditional probability p on \mathcal{A} associated with μ relative to \mathcal{A}_1 may exist, the σ -algebras \mathcal{A} and \mathcal{A}_1 may be both countably generated, but a proper regular conditional probability p on p0 associated with p1 relative to p1 may not exist. The proper regular conditional probabilities are studied in [26,27]; in [27] an example is given showing that Proposition 3.2(p2) may not be true when p3 is not countably generated.

Proposition 3.5. Let (X, \mathcal{A}, μ) be a probability space, (Y, \mathcal{F}) be a measurable space, $\eta: X \to Y$ be a $(\mathcal{A}, \mathcal{F})$ measurable map and $\mathcal{A}_{\eta} := \eta^{-1}(\mathcal{F})$.

- (a) If a regular conditional probability q on A associated with μ relative to η exists, then a regular conditional probability p on A associated with μ relative to A_{η} exists as well and it can be obtained by the equality: $p(A,x)=q(A,\eta(x)), A \in A, x \in X.$
- (b) If a regular conditional probability on A associated with μ relative to A_{η} exists and $\eta(X)$ is μ_{η} -measurable, then a regular conditional probability on A associated with μ relative to η exists as well.

Proof. (a) It is clear that p is a transition probability relative to (X, A) and (X, A_{η}) . Fix $A \in A$ and $B \in \mathcal{F}$. By the change of variable formula we can write:

$$\int_{\eta^{-1}(B)} p(A, x) d\mu(x) = \int_{B} q(A, \eta(x)) d\mu = \int_{B} q(A, y) d\mu_{\eta}(y),$$

By (MRCP3) we have:

$$\mu(A \cap \eta^{-1}(B)) = \int_{B} q(A, y) d\mu_{\eta}(y).$$

Consequently,

$$\mu(A \cap \eta^{-1}(B)) = \int_{\eta^{-1}(B)} p(A, x) \, d\mu(x).$$

Since $A \in \mathcal{A}$ and $B \in \mathcal{F}$ are arbitrary, the last equality means that p is a regular conditional probability associated with μ relative to \mathcal{A}_n .

(b) Let $p: \mathcal{A} \times X \to [0,1]$ be a regular conditional probability associated with μ relative to \mathcal{A}_{η} . Fix $A \in \mathcal{A}$. Since the function $p(A,\cdot)$ is \mathcal{A}_{η} -measurable, by Lemma 2.1, there exists a \mathcal{F} -measurable function $g_A: Y \to [0,1]$ such that $p(A,x) = g_A(\eta(x))$, $\forall x \in X$. By the assumption, $\eta(X)$ is μ_{η} -measurable. Therefore, there exists $Y_1 \in \mathcal{F}$ such that $Y_1 \subset \eta(X)$ and $\mu_{\eta}(Y_1) = 1$. Define a mapping $q: \mathcal{A} \times Y \to [0,1]$ by the equalities: $q(A,y) = g_A(y)$, $y \in Y_1$, $A \in \mathcal{A}$ and $q(A,y) = \mu(A)$, $y \in Y \setminus Y_1$, $A \in \mathcal{A}$.

Let us see now that q is a transition probability relative (X, A) and (Y, \mathcal{F}) .

For a fixed $A \in \mathcal{A}$ the function $q(A, \cdot)$ is \mathcal{F} -measurable, because g_A is and $Y_1 \in \mathcal{F}$.

Fix now $y \in Y_1$ and let us see that $q(\cdot, y)$ is a probability measure on \mathcal{A} . Since $y \in Y_1$ and $Y_1 \subset \eta(X)$, there exists $x \in X$ with $\eta(x) = y$. Then by the definition of q we have q(A, y) = p(A, x), $\forall A \in \mathcal{A}$. Since $p(\cdot, x)$ is a probability measure on \mathcal{A} , the set function $q(\cdot, y)$ is as well.

Note that q satisfies (MRCP3). Fix $A \in \mathcal{A}$ and $B \in \mathcal{F}$. As $\mu_{\eta}(Y_1) = 1$, we can write using the change of variable formula and (RCP3) for p:

$$\int_{B} q(A, y) \, d\mu_{\eta} (y) = \int_{B \cap Y_{1}} q(A, y) \, d\mu_{\eta} (y) = \int_{\eta^{-1}(B \cap Y_{1})} q(A, \eta(x)) d\mu(x) =$$

$$= \int_{\eta^{-1}(B \cap Y_1)} p(A, x) d\mu(x) = \mu(A \cap \eta^{-1}(B \cap Y_1)) = \mu(A \cap \eta^{-1}(B)).$$

Consequently, q is a regular conditional probability associated with μ relative to η . \square

Remark 3.6. We note in connection with Proposition 3.5(b) that for a given measurable mapping the condition " $\eta(X)$ is μ_{η} -measurable" may not be satisfied even if $(Y, \mathcal{F})=(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. A probability space (X, \mathcal{A}, μ) (also the measure μ itself) is called *perfect*, if for every \mathcal{A} -measurable $\eta:X\to\mathbb{R}$ one has that $\eta(X)$ is μ_{η} -measurable. This concept was introduced in [28] and perfectness was even included as a postulate in the definition of a probability space. A substantial study of perfect measures was made in [29].

4. Disintegration of general probability measures.

In this section we clarify the relationship between regular conditional probabilities and disintegrations.

Let (X, \mathcal{A}, μ) be a probability space, (Y, \mathcal{F}) be a measurable space and $\eta: X \to Y$ be a $(\mathcal{A}, \mathcal{F})$ -measurable mapping. It is clear that a disintegration of μ with respect to η is a transition probability relative to (X, \mathcal{A}) and (Y, \mathcal{F}) with the additional properties (Dis3) and (Dis4).

Lemma 4.1. Let (X, \mathcal{A}, μ) be a probability space, (Y, \mathcal{F}) be a measurable space and $\eta: X \to Y$ be a $(\mathcal{A}, \mathcal{F})$ -measurable mapping for which there exists a disintegration q of μ on \mathcal{A} with respect to η . Then $\eta(X)$ is μ_{η} -measurable.

Proof. Let N be as in (Dis3) and $Y_0 = Y \setminus N$. Then $Y_0 \in \mathcal{F}$ and $\mu_{\eta}(Y_0) = 1$. Fix arbitrarily $y \in Y_0$; since $q(\eta^{-1}(\{y\}, y)) = 1$, we get that $\eta^{-1}(\{y\}) \neq \emptyset$. Consequently, $y \in \eta(X)$ and hence, $Y_0 \subset \eta(X)$. The last inclusion (together with $Y_0 \in \mathcal{F}$ and $\mu_{\eta}(Y_0) = 1$) implies μ_{η} -measurability of $\eta(X)$.

Proposition 4.2. Let (X, \mathcal{A}, μ) be a probability space, (Y, \mathcal{F}) be a measurable space and $\eta: X \to Y$ be a $(\mathcal{A}, \mathcal{F})$ -measurable mapping.

- (a) (cf. [23, Theorem 2]) If q is a regular conditional probability on \mathcal{A} associated with μ relative to η and $gr(\eta) \in \mathcal{A} \otimes \mathcal{F}$, then q is a disintegration of μ on \mathcal{A} with respect to η and $\eta(X)$ is μ_{η} -measurable.
- (b) If q is a disintegration of μ on A with respect to η , then q is a regular conditional probability on A associated with μ , relative to η .
- (c) If A is countably generated and q_1, q_1 are disintegrations of μ on A with respect to η , then there exists a set $N \in \mathcal{F}$ such that $\mu_n(N) = 0$ and

$$q_1(A, y) = q_2(A, y), \forall x \in Y \setminus N, \forall A \in A.$$

Proof. (a) Clearly, q has the properties (Disl), (Dis2) and (Dis4). It remains to show that q has the property (Dis3) as well.

Since $gr(\eta) \in \mathcal{A} \otimes \mathcal{F}$, we can apply Proposition 3.1 for $E = gr(\eta)$ and get

$$1 = \mu\{x \in X : (x, \eta(x)) \in E\} = \int_{\mathcal{V}} q(E_{\cdot, y}, y) \, d\mu_{\eta}(y) = \int_{\mathcal{V}} q(\eta^{-1}(\{y\}), y) \, d\mu_{\eta}(y).$$

Hence, $\mu_{\eta}\{y \in Y : q(\eta^{-1}(\{y\}), y) = 1\} = 1$. Therefore, q is a disintegration and then μ_{η} -measurability of $\eta(X)$ follows from Lemma 4.1.

(b) (cf. [7, pp. 146-147]) Let $A \in \mathcal{A}$ and $B \in \mathcal{F}$, N be as in (Dis3) and $y \in Y/N$. Since $q(\eta^{-1}(\{y\}), y) = 1$, we can write $q(A \cap \eta^{-1}(B), y) = q(A, y)1_B(y)$. As $\mu_n(N) = 0$,

$$\int_{B} q(A, y) d\mu_{\eta}(y) = \int_{Y/N} q(A, y) 1_{B}(y) d\mu_{\eta}(y) = \int_{Y/N} q(A \cap \eta^{-1}(B), y) d\mu_{\eta}(y) = \int_{Y} q(A \cap \eta^{-1}(B), y) d\mu_{\eta}(y).$$

i.e., $\int_B q(A,y)d\mu_\eta(y) = \int_Y q(A\cap \eta^{-1}(B),y)d\mu_\eta(y)$. From this and (Dis4) we get

$$\int_{B} q(A, y) \, d\mu_{\eta}(y) = \int_{Y/N} q(A, y) \mathbf{1}_{B}(y) \, d\mu_{\eta}(y) = \int_{Y} q(A \cap \eta^{-1}(B), y) \, d\mu_{\eta}(y) = \mu(A \cap \eta^{-1}(B)).$$

Hence, q is a regular conditional probability on A associated with μ relative to η .

(c) By (b) we have that q_1 , q_2 are regular conditional probabilities on \mathcal{A} associated with μ relative to η . Since \mathcal{A} is countably generated, the conclusion follows from Proposition 3.2.

Remark 4.3. We note:

- (1) Proposition 4.2(a) is for $(Y, \mathcal{F}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ contained in [30, Lemma 3.1, p.290]; however, the proof presented there is not quite clear.
- (2) Proposition 4.2(a) is not true in general (even if $\{y\} \in \mathcal{F}, \ \forall y \in Y$). In fact, let $(X, \mathcal{A}, \mu) = ([0,1], \mathcal{B}([0,1]), \mu)$ (where μ stands for the Lebesgue measure), $(Y,\mathcal{F}) = ([0,1], \mathcal{F})$, where \mathcal{F} is σ -algebra generated by finite subsets of [0,1]; put $\eta(x) = x$, $\forall x \in [0,1]$. Then $q: \mathcal{A} \times Y \to [0,1]$, defined by the equality $q(A,y) = \mu(A), A \in \mathcal{A}, y \in Y$, is a regular conditional probability on \mathcal{A} associated with μ relative to η . However, $q(\eta^{-1}(\{y\}), y) = 0$, $\forall y \in Y$. Hence, q is not a disintegration of μ on \mathcal{A} with respect to η .

Acknowledgements: The authors were partially supported by GRDF grant GEM-3328-TB-03 and by GNSF grant ST06/3-009.

We appreciate the help of the technical editor Paata Korkia in giving to our manuscript the form required by this Journal.

მათემატიკა

რეგულარული პირობითი ალბათობები და დეზინტეგრაციები

ნ. ვაზანია^{*}, ვ. ტარიელაძე^{**}

ალბათობის თეორიისა და მისი გამოყენებებისთვის მნიშვნელოვანია შემდეგი ცნებები, რომელთა კვლევა დაიწყო ჯ. დუბის მიერ და დღემდე გრძელდება: რეგულარული პირობითი ალბათობა სიგმა-ალგებრის

^{*} აკადემიის წეერი, ნიკო მუსხელიშვილის გამოთვლითი მათემატიკის ინსტიტუტი, თბილისი

^{**} ნიკო მუსხელიშვილის გამოთვლითი მათემატიკის ინსტიტუტი, თბილისი