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ABSTRACT. On the average once in 4 years uncontrolled geostationary satellites suffer small sudden changes
of speed, which is connected with their collisions with fine space debris. Most of these events are caused by
collisions with meteoric bodies. Such collisions threaten space vehicles as well, sent to planets of the solar system
to study their physical nature.

The present paper is devoted to determining the degree of risk of collision of a space vehicle with meteors at
different possible variants of its interplanetary orbit. The study allows to select - out of several possible variants —
the least hazardous trajectory of interplanetary flight of a space vehicle from the point of view of meteoric danger.
© 2007 Bull. Georg. Natl. Acad. Sci.
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1. Introduction

Since the 1990s, in connection with the increased number of space vehicles (SV) investigating interplanetary
space, the need has arisen of a careful calculation of their orbits from the viewpoint of minimization of expenditure of
power resources, as well of the selection of the minimally hazardous orbits in space.

In the 21st century interplanetary flights of SV with people on board are also planned and practically preparations
are under way for expeditions to the nearest planets. Therefore, careful choice of trajectories of flights is not only
important but necessary as well.

Our long-term work with uncontrolled geostationary satellites shows that from time to time (on the average, once
in 4 years) they suffer small - within the limits of several mm/s - sudden changes of speed, which is connected with
their collisions with fine space debris. Most of these events are caused by collisions with meteoric bodies [1-5].

Obviously, SVs, sent to planets of the solar system to study their physical nature, are threatened with such
collisions, entailing disaster.

The present study is devoted to determining the degree of risk of collision with meteors for different possible
variants of SV interplanetary orbit.

As is known, the bulk of meteoric bodies moves in the form of streams created by comets. These bodies move
along the orbit of the comet generating them, at speeds of some dozens of km/s, and at a relatively short (within one
million kilometers) distance from it. Sporadic meteors are smaller in number and they move chaotically.

The task of the present work is to choose from a set of possible heliocentric orbits of a SV the optimum, allowing
to avoid the crossing of the orbits of comets (the orbits being the sites of congestion of meteoric bodies) by it and
ensuring maximal remoteness from them.

It is necessary to note that the details of the distribution of meteoric bodies in streams are more or less known
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only for those few objects that cross the Earth’s orbit during their annual revolution round the Sun.

Owing to this, it is necessary to assume a uniform distribution of meteoric bodies along orbits. For different
streams the identicalness of their spatial density and the laws of its decrease with distance from the orbit of a comet
are also postulated.

2. Calculation of the risk-factor of collision of a space vehicle with meteors

We shall further assume that the spatial density of meteoric bodies changes by the Gauss formula according to
the distance from the orbit of the comet that has generated meteoric stream:

Pa=Pe "7 @)

where p, is the spatial density of meteoric bodies at distance A from the comet’s orbit, r, - spatial den51ty of meteoric
bodies on the orbit (constant for all streams). The parameter A, is accepted to equal 0.01 AU, i.e. 1.5x 10°km.

To calculate the value of A let us introduce a rectangular system of coordinates connected with the orbit of the
comet. The origin of the coordinate system coincides with the Sun, X-axis shall be directed to the perihelion of the
orbit and Y-axis - to the plane of this orbit, in the direction of the movement of the comet.

The position of a SV at some moment ¢ in the selected system of coordinates will be designated through x,, v,

The problem of finding the value of A is thus reduced to finding the minimal distance between the SV and the
orbit of the comet, i.c. to the search of the minimum of the function:

A2=(x—x0)2+(y—y0)2+202, (2)

where the points on the orbit of the comet are designated through the x and y coordinates.
From theoretical astronomy it is known that:

cOS Sil’lV
_ _poosv y=_LMY ©)
1+ecosv l+ecosv

where p is the parameter of the orbit, e - its eccentricity, v - true anomaly.
Equating to zero the result of differentiation (2) with respect to v and substituting the values x and y, determined
from (3), we receive:

(ex, cosv, +x, +ep)sinv, = y,[ecos’ v, +(1+e”)cosv, te], @

where the value of the true anomaly for a point on the comet’s orbit, being at the minimal distance from the SV, is
designated through v .
Inputting a new variable

v
gt )
q=1g >
the equation (4) can be given in a simpler form:
Vo(l=e)q" +2(ep+x, —ex))q’ +2(ep +x, +ex,)qg— y,(1+e)* = 0. ©

The fourth degree of the equation (6) relative to g reflects the fact that generally from one point on an ellipse it
is possible to drop four perpendiculars, satisfying the condition of the extremum (4).

3. Solution of the equation for true anomaly

The equation (6) is solved most conveniently by way of consecutive approximations.

It is possible to find geometrically, the first approximation to the root of this equation, corresponding to minimal
A, by crossing the ellipse of the comet’s orbit with the bisector of an angle formed by straight lines, connecting the
SV with the focuses of the ellipse.

These lines (the sides of an angle) form some angles with X-axis, whose values we shall designate through o and
£ They are determined by the following equations:
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2
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whence the factor & of the inclination of the bisector is equal to:

a+
k=tg— @

€ 2

Hence, the equation for the point of intersection of the bisector with the comet’s orbit is as follows:
psmy, =k pcosy, x|, ©)
1+ecosv, 1+ecosv,

where the preliminary value of v is designated through v,,.
Substituting in (9) the value of v, determined by means of (5), for the initial (zero) approximation of g we obtain
the equation:

[A-eXy, _kxo)_kp]qo2 =2pq, +(1+e)(y, —kx)+hkp =0, (10)

easily solved relative to g,
Because the eccentricities of the comets’ orbits are close to unity, the member of the fourth degree in the equation
(0) is small, allowing to consider a third degree equation, instead of (6):

qg>+34g-2B =0, (11)
where
__ep+d+ex, ’ B:yo[(1+€)2—(1—€)2614]_ 12)
ep+d-e)x,] Hep +(1-e)x,]

The value of B is specified by consecutive approximations.
If the inequality takes place:

B* + 4% >0, 13)
then the equation (11) has one real root, according to the Kardano formula, equal to
1/3 1/3
q=(B+\/B2+A3) +(B—\/B2+A3) (14)
If the inequality (13) does not take place, the equation (11) has three real roots. In that case we shall use iterations
in the process of approximations:
i1 = (2B=34g,)". (15)

Here it is useful to apply the following routine allowing to essentially improve the convergence of the iteration
process. If we have three consecutive approximations g, g, and g,, the following expression may be derived:

R VE —612 (16)

qs = >
! g +49;—2q,

then g, will essentially prove more precise than the previous approximations. With a view to accelerating the conver-
gence of the process of iterations the formula (16) can be applied repeatedly.

4. Transition from the system of coordinates connected with the SV orbit to the system of
the comet’s orbit

In the system of coordinates connected with an SV orbit (if X-axis is directed to its perihelion) the coordinates of
the SV x,, v, z, are expressed similarly to (3):
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P, cosv, _ p;siny,

x, = 5 1= 5
1+e¢ cosvy, 1+e¢ cosv,

z, =0. 17

The index / corresponds to the system of coordinates related to the SV orbit and the value » for each separately
taken moment ¢, is determined through the solution of Kepler’s equation:

v, l+e E,

LENE (el R o
where
E, —e/sinE, =M,. (19
The duration of the flight of the SV is equal to
AT =a)* (M, -M,), (20)

where the initial and final values of the mean anomaly of the SV are designated through M, and M, respectively; a, is
a semimajor axis of the SV orbit.

To calculate the values of v, by means of the expressions (19) and (20), we shall divide the interval DT into L equal
parts.

Transition from the coordinates x,, y,, z, to the coordinates x, y,, z, in the system connected with the orbit of the
comet is effected by the formulas of spherical trigonometry:

X, =x,(cos @cosQ —sin wsin Q cosi) — y, (sin @ cos QA + cos wsin Q cos i),
Yo =x,(cos@sin Q + sin @ cos Q cosi) — y,(sin wsin Q — cos @ cos Q cos i), 21

z, =sini(x, sin® + y, cos ),

where the inclination, argument of perihelion and the longitude of the Node of the SV orbit relative to the comet’s
orbit are designated through i, @ and Q respectively. These values are calculated by means of the expressions:

cosi=cosi, cosi, +sini, sini, cos(Q2, —Q,),

sini, sin(Q2, —Q,)
. . . 3 . . b
—cosi, sini, +sini, cosi, cos(Q2, —Q,)

0=, —arctg (22)

sini, sin(Q, —Q,)

Q=arclg———— - -
sini, cosi, —cosi, sini; cos(Q2, — €,)

o

where the index n designates the elements of an orbit of n" comet relative to the ecliptic.
Finally, the non-normalized probability of collision of the SV with a meteor for the entire time of flight will be:

p-dr 55 15 -

where N designates the total number of the orbits of the comets used at calculations.

By the software realized on Fortran, in the case of using elements of the orbits of 500 comets and dividing the DT
interval into 1000 times, it takes PC Pentium — 4, to calculate the probability of collision of an SV with meteors, 4s of
machine time.

Thus, the present study allows choosing the safest, out of several possible variants of the trajectory of interplan-
etary flight of SV, from the point of view of collisions with meteors.
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