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ABSTRACT. 1t is well known that the convergence of the series Z? a,6, in a Banach space for all sequences

of signs (6,) is equivalent to the convergence of all rearrangements of Z? a; . We find an analogue of this fact

in the case when instead of the convergence for all signs we have only the convergence for almost all signs. The
results make sense even in the scalar case. We also find an application of the result to the following Nikishin

problem: Assume a series Z? ¢, of random variables is such that a subsequence of partial sums tends to a

random variable S. When does there exist a rearrangement of the series convergent to S almost surely? © 2009
Bull. Georg. Natl. Acad. Sci.

Key words: convergence of series, almost all signs, almost all simple permutations, rearrangement convergence
almost surely.

1. Introduction

Let ZT a; be a series with terms in a Banach space X convergent to an element S € X. It is well known that

the series ZT a, 8, converges for all sequences 6 =(6,,6,,...) of signs if and only if the series ZT g converges
for all permutations 7 : N — N . The main question we consider in this note is: what happens, if instead of
convergence for all signs we require the convergence for almost all signs, i.e. the convergence almost surely of
ZT a;r; , where (7;) is a sequence of Rademacher random variables taking values %1 with equal probabilities? Or,
in other words, what is the permutational counterpart of the convergence of ZT a,0, for almost all signs 6 =(6,) ?
We show that the corresponding condition expressed in terms of permutations can be stated as follows: The series

21 A, converges for almost all simple permutations 7:N — N, where the latter notion is appropriately

understood.

Our results have applications to the following problem initiated by Garsia [1] and Nikishin [2]. Let (f ;) bea

. . k, .
sequence of random variables such that a sequence of partial sums S, = 21 &, converges a.s. to a random variable
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S . When does there exist a permutation 7z : N — N such that the series ZT &y converges a.s. to S ? We prove in

. - . Ky . .
particular that this is the case, if Zkﬁ'l &1, goes a.s. to zero, where (r;) is the Rademacher sequence independent of
(&) . Besides, we prove that under this condition the set of permutations & ensuring the convergence a.s. of

ZT fﬁ(l) to S is rich enough. For some classes of Banach spaces the results can be expressed through the
individual summands g, -s and &, -s. These results improve and generalize the known results.
Nikishin type theorems suggest the existence of a series that converges in measure but none of its

rearrangements converges a.s. We have constructed such an example with an additional condition of convergence to
zero of the general term. The example will be published separately.

2. Notations.

(Q, A,, P)denotes underlying probability space. A mapping £:Q — X is said to be a random variable in a
Banach space X (an X -valued random variable), if it is Bochner measurable. Let k = (k,), 1=k <k, <... be a

sequence of integers, I,’f ={k, +1....k,,;}, ne N be the sequence of corresponding blocks, Hﬁ be the group of all
k

n?

permutations 7™ : I ,]l‘ -1 ,u,]f be the uniform probability distribution on H/,‘l (assigning to each 7™ the

probability 1/(k,,; —k,)! ), and let Zﬁ be the o -algebra of all subsets of Hﬁ . Then we consider the product of

n+l

probability spaces
@ = u =TT

k sk ok
n=1 ( Hn ? Zn ? lun )

Note that IT* is a Tikhonov compact group and ,uk is the Haar measure on it. Each element (7", 7%, )€
1% defines a permutation 7 : N — N . Namely, if /€ I,’f , then 7()=7" ()€ I,]f. We say that such a 7 is a

simple permutation acting within the blocks / ,’f, ne N ,orthat [ ,lf ,ne N are invariant blocks for 7.

3. Convergence of series for almost all permutations. The case of constant summands.

Let us start with the case when the summands are constants.
Theorem 1. Let (a,) be a sequence of elements of a Banach space X such that a sequence of partial sums

k oo ..
Sk :Zl” a;, ne N, converges to Se€ X . In order that Zl Ay converges to S for u* -almost all 7v’s it is

necessary and sufficient that

zim a;r; =0 A-almost surely (1)

+1

where (r,),ne N is the sequence of Rademacher functions defined on [0,1] with the Lebesgue measure A and
k=(k,), 1=k <k, <....
Proof of the theorem is based on the following two-sided inequality found in [3].

Lemma 1. Let x,...,x, be elements of a normed space X , real or complex, S = erl . Then for each t >0
the following two-sided inequality holds:
n 1 k
Auc| D xm ) > 20+ S ) <— card(z :max;, 1D ey | > =11 S} <
1 : 1 (2)
C t
104 | X 2 @Il > =2 S |-
1

Lemma 1 goes back to the monograph [4] where a version of the right-hand-side inequality was found for X =
R. Inequality (2) generalizes the Maurey-Pisier theorem [5] stating that for some absolute positive constants C; and

C, the following two-sided inequality holds
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n 1 k n
CE| le”l [ S;zmanSn | ler(l) [<GE| le"l [
1 oz 1 1

For another generalization see [6] where a further development of the inequality is conjectured and proved for
X =R.
k
Let us sketch the proof of Theorem 1. Denote V, = Zk”ilal and M7 =max; _,< | ZZ 1 %x || - To prove

the sufficiency part we use the right-hand-side of (2) to get that for any € >0

o

e kn+1
DU M|V, > e} <10 A quc|| Y an@ | 2]V, || >

1 n=1 k,+1

I3
—}. 3
1 2} 3)
Convergence of S, implies the convergence of V, to zero. Therefore, condition (1), independence of the
Rademacher sequence (r;) and the necessity part of the Borel-Cantelli lemma imply the finiteness of the right-hand-

side of (3). Hence, the left-hand-side of (3) is also finite. Now, due to the sufficiency part of the Borel-Cantelli

lemma the latter implies the convergence x* -a.s. to zero of M7 +||V, || and hence the convergence u* -a.s. to zero
of M.
We have due to the left-hand-side part of (2): for any £ >0
i kn+l o
£
DA Y an@ =1V, > )< Y ut e M|V, > ) <o 4)
n=1 ky+ 1

Since M7 =0 u* —as. and V, -0, (4) implies (1).

4. Condition (1) expressed in terms of coefficients.

In the light of Theorem 1 of interest are conditions ensuring condition (1) in terms of coefficients (a;). A rich
source of such conditions is provided by the fact that (1) is implied by the convergence a.s. of ZT ar.

Theorem 2. Each of the following conditions (i), (ii) and (iii) implies the convergence a.s. of ZT a,r,, and
therefore implies condition (1) for any k = (k,), k, =1, k; <k,,... ; Under the conditions of Theorem 1 each of the
conditions (i), (ii) and (iii) ensure the convergence of ZT Az to S for ,uk -almost all 7 -s.

(i) X is a general Banach space and ZT Pl a; ) <o, where p isthe modulus of smoothness of X ;

(ii) X is a Banach lattice of some cotype q, 2< q<eo and
n 1
(Z|a, [*)2 convergesin X as n—oo;
1
(iii) X =L,(T,Z,v) , 1S p<eo,

where the measure v is O-finite, and
o P
[la® P2 dviy <o
T 1

The fact that the convergence of ZT a,r; follows from (i) was proved in [7] ; that it follows from (ii) was
proved in [8]; and that (iii) coincides with (ii) for L, -spaces, 1< p <eo, can also be found in [8].
5. The existence setting in the case of constant summands.

In the 1960s and 70s the problem of existence of a permutation ensuring the convergence of a series was very
popular. It is closely related to the famous problem on the structure of the sum range of a conditionally convergent

series in finite-dimensional and infinite-dimensional spaces (see the monograph [9]). Obviously Theorems 1 and 2
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give as corollaries some existence conditions. All the existence results listed below follow from these theorems. For

additional information the reader is referred to [9,7,3]. The first result for the infinite-dimensional case was found by

- d
M.I.Kadets [10] where he has shown the existence of the desired permutation under the condition zl la; || < e,
where d = min (2, p). Later on his students have shown in [11,12] the existence of the permutation under condition

(1) of Theorem 2 for a general Banach space. Then in [13] much weaker condition (iii) of Theorem 2 in the existence
setting was found for L, -spaces, true, only for 1< p<2 (as we know from Theorem 2, the result holds for all

p, 1< p <oo). Further, as we already noticed, Theorem 1 implies the sufficiency of (1) and therefore, the
sufficiency of the convergence of ZT a;r; for the existence of a desired permutation. This fact which is considered

to be the most effective general condition in the infinite-dimensional case was established in [5], and independently
in [3,7] by different methods. For the sake of completeness of presentation let us give the following strongest

existence result which does not follow from Theorems 1 or 2.

= . . ku
Theorem 3. Let 21 a; be a series in a normed space X such that S, = 21 a;, ne N, convergesto Se€ X .

Then there is a permutation 7 :N — N such that ZT apqy =S provided that the following o -6 -condition is

satisfied:

For any permutation o :N — N there is a sequence of signs 6 =(6,,0,,...) such that the series ZT aqy0,

converges in X .
Theorem 3 was proved in [14] and independently by use of a different method in [15]. Obviously, the o - € -

condition is weaker than the convergence of 21 a;1; . Moreover, in the finite-dimensional case the o -6-
condition is satisfied, if just @; -0as [ — o . Hence, Theorem 3 for a finite-dimensional X gives the Steinitz
theorem [16] saying that Theorem 3 holds true, if ¢; -0 as | — . However, convergence of ZT a,1;, although
much stronger than the ¢ - @ -condition, according to Theorem 1, ensures more: convergence of ZT a,, for ,Uk -

almost all 7 -s.

6. Equivalence between the convergence of series for almost all signs and almost all
permutations.

Let ZT a, be a convergent series in a normed space X . We say that it converges for almost all simple
permutations, if for each sequence k = (k,), k =1, k; <k, <,...

u{ment :Za”(l) converges} = 1.
1

Applying Theorem 1 to each sequence of the partial sums of a convergent series we come to the following

assertion.

Theorem 4. Let ZT a; be a convergent series in a Banach space X . The following are equivalent.
@) ZT a;r; converges a.s. in X ;

(i1) ZT a; converges in X for almost all simple permutations.

7. Random series: Convergence almost surely for almost all permutations.

Here we apply Theorem 1 to series of random variables. By virtue of the Fubini theorem we can state the

following corollary to Theorem 1.
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Theorem 5. Let (£,) be a sequence of random variables defined on (Q, A,, P) and taking values in a normed

. kIX
space X such that a sequence of partial sums S, = 21 &, ne N, converges P -a.s. to an X -valued random

variable S . In order that ZT éf,,(l) converges to S ,uk X P -almost surely, it is necessary and sufficient that

ZE”:I &, >0 AxP-almost surely Q)
where (r,), n€ N is the sequence of Rademacher functions defined on [0,1] with the Lebesgue measure A and
k=(k,)), 1=k <k, <....

Let us remark as in the case of constants in Section 3 that the condition

ZT & r, converges Ax P -almost surely (6)

is stronger than (5) and therefore implies the yk X P -almost sure convergence of ZT &y - The condition was

stated in [17] as an existence condition. Although not necessary, (6) proves to be convenient especially when the
sequence k = (k,)is not known. Another benefit of (6) is that for the classes of Banach spaces, in contrast to (5), it

can be expressed effectively in terms of individual summands &,-s (see Section 3). We don’t give here all the

corollaries, instead we restrict ourselves with the case of scalar & -s that leads in the existence setting to the famous
Nikishin and Garsia theorems.

Corollary. (a) (Nikishin, [2].) Assume a series ZT@ of real or complex random variables converges in

measure and ZT| & |* <eo a.s. Then there exists a permutation 7:N — N such that ZT &) converges a.s.

(b) (Garsia, [1].) Let (¢;) <L, (T,X,v) be an orthonormal system and (¢;) be real or complex coefficients with

oo 2 oo
21 |0 | <eo. Then there exists a permutation 7:N — N such that 21 )Py CONVErges a.s.

In [18] we have found a simple straightforward way of proving the Garsia inequality that leads to Corollary (b).
The method based on inequality (2) we used in this paper can be applied to different areas of probability and
analysis to get the existence or massiveness of a.s. convergent rearrangements of normalized sequences. In this way

we have found various formulations of the strong laws of large numbers under rearrangements [19, 20].
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