
saqarTvelos   mecnierebaTa   erovnuli   akademiis   moambe, t. 3,    #2,   2009
BULLETIN  OF  THE  GEORGIAN  NATIONAL  ACADEMY  OF  SCIENCES,  vol. 3, no. 2,  2009

© 2009  Bull. Georg. Natl. Acad. Sci.

Mathematics

Equivalence of Convergence for Almost all Signs and Almost
all Rearrangements of Functional Series

Sergei Chobanyan*, Shlomo Levental**, Vidyadhar Mandrekar**

* Niko Muskhelishvili Institute of Computational Mathematics, Tbilisi
**  Michigan State University, Department of Statistics and Probability, USA

(Presented by Academy Member N. Vakhania)

ABSTRACT. It is well known that the convergence of the series lla θ∞
1

 in a Banach space for all sequences

of signs )( lθ  is equivalent to the convergence of all rearrangements of 
∞
1 la . We find an analogue of this fact

in the case when instead of the convergence for all signs we have only the convergence for almost all signs. The
results make sense even in the scalar case. We also find an application of the result to the following Nikishin

problem: Assume a series 
∞
1 lξ of random variables is such that a subsequence of partial sums tends to a

random variable S. When does there exist a rearrangement of the series convergent to S almost surely? © 2009
Bull. Georg. Natl. Acad. Sci.

Key words: convergence of series, almost all signs, almost all simple permutations, rearrangement convergence
almost surely.

1. Introduction 

Let 
∞
1 la  be a series with terms in a Banach space X  convergent to an element .XS ∈  It is well known that 

the series lla θ∞
1

 converges for all sequences ,...),( 21 θθθ =  of signs if and only if the series 
∞
1 ){laπ converges 

for all permutations NN →:π . The main question we consider in this note is: what happens, if instead of 

convergence for all signs we require the convergence for almost all signs, i.e. the convergence almost surely of

ll ra
∞
1

 , where )( lr  is a sequence of Rademacher random variables taking values 1± with equal probabilities? Or,

in other words, what is the permutational counterpart of the convergence of lla θ∞
1

 for almost all signs )( lθθ = ?

We show that the corresponding condition expressed in terms of permutations can be stated as follows: The series 
∞

1 ){laπ converges for almost all simple permutations NN →:π , where the latter notion is appropriately 

understood. 

Our results have applications to the following problem initiated by Garsia [1] and Nikishin [2]. Let )( lξ be a 

sequence of random variables such that a sequence of partial sums = n

n

k
lkS

1
ξ  converges a.s. to a random variable
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S . When does there exist a permutation NN →:π such that the series 
∞
1 )(lπξ  converges a.s. to S ? We prove in

particular that this is the case, if +

+
1

1
n

n

k

k ll rξ  goes a.s. to zero, where )( lr is the Rademacher sequence independent of

)( lξ . Besides, we prove that under this condition the set of permutations π  ensuring the convergence a.s. of
∞
1 )(lπξ  to S  is rich enough. For some classes of Banach spaces the results can be expressed through the 

individual summands la -s and lξ -s. These results improve and generalize the known results. 

Nikishin type theorems suggest the existence of a series that converges in measure but none of its

rearrangements converges a.s. We have constructed such an example with an additional condition of convergence to 

zero of the general term. The example will be published separately.  

2. Notations. 

),,( PA, denotes underlying probability space. A mapping X→Ω:ξ is said to be a random variable in a

Banach space X  (an X -valued random variable), if it is Bochner measurable. Let )( nkk = , ...1 21 <<= kk be a 

sequence of integers, },,...,1{ 1++= nn
k
n kkI Nn ∈  be the sequence of corresponding blocks, k

nΠ be the group of all

permutations :)(nπ ,k
n

k
n II → k

nμ  be the uniform probability distribution on k
nΠ  (assigning to each )(nπ the

probability )!/(1 1 nn kk −+  ), and let k
nΣ  be the σ -algebra of all subsets of k

nΠ . Then we consider the product of 

probability spaces  

),,( kkk μΣΠ  = ∏∞

=1
(

n
k
nΠ , k

nΣ , k
nμ ).

Note that kΠ  is a Tikhonov compact group and kμ  is the Haar measure on it. Each element ∈,...),( )2()1( ππ
kΠ  defines a permutation NN →:π . Namely, if k

nIl ∈  , then k
n

n Ill ∈= )()( )(ππ . We say that such a π is a

simple permutation acting within the blocks NnI k
n ∈, , or that NnI k

n ∈,  are invariant blocks for π .

3. Convergence of series for almost all permutations. The case of constant summands. 

Let us start with the case when the summands are constants. 
Theorem 1. Let )( ka  be a sequence of elements of a Banach space X such that a sequence of partial sums

= n

n

k
lk aS

1
, Nn ∈ , converges to XS ∈ . In order that 

∞
1 )(laπ converges to S  for kμ -almost all π ’s it is

necessary and sufficient that  

01

1
→+

+
n

n

k

k ll ra λ -almost surely  (1)

where Nnrn ∈),(  is the sequence of Rademacher functions defined on ]1,0[  with the Lebesgue measure λ and

)( nkk = , ...1 21 <<= kk  . 

Proof of the theorem is based on the following two-sided inequality found in [3].

Lemma 1. Let nxx ,...,1  be elements of a normed space X , real or complex, = n
lxS

1
. Then for each 0>t

the following two-sided inequality holds:

.||}||2
12

||)(||:{10

||}||||||max:{
!

1
||}||2||)(:||{

1

1
)(

1

−>

≤−>≤+> ≤

n

ll

k

lnk

n

ll

S
t

urxu

Stxcard
n

Sturxu

λ

πλ π

  (2)

Lemma 1 goes back to the monograph [4] where a version of the right-hand-side inequality was found for =X
R. Inequality (2) generalizes the Maurey-Pisier theorem [5] stating that for some absolute positive constants 1C and

2C the following two-sided inequality holds 
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.||||||||max
!

1
||||

1
2

1
)(

1
1 ≤≤ ≤

n

ll

k

lnkl

n

l rxECx
n

rxEC
π

π

For another generalization see [6] where a further development of the inequality is conjectured and proved for 

=X R.

Let us sketch the proof of Theorem 1. Denote +

+
= 1

1
n

n

k

k ln aV and ||||max
1 )(1 +≤< +

= m

k lkmkn
nnn

aM π
π  . To prove 

the sufficiency part we use the right-hand-side of (2) to get that for any 0>ε

}.
12

||||2||)(||:{10}||||:{
1 11

1 ελεπμ π >+≤>+
∞

= +

∞ +

nl
n

k

k
lnn

k VurauVM
n

n

 (3)

Convergence of 
nkS  implies the convergence of nV to zero. Therefore, condition (1), independence of the 

Rademacher sequence )( lr  and the necessity part of the Borel-Cantelli lemma imply the finiteness of the right-hand-

side of (3). Hence, the left-hand-side of (3) is also finite. Now, due to the sufficiency part of the Borel-Cantelli 

lemma the latter implies the convergence kμ -a.s. to zero of |||| nn VM +π  and hence the convergence kμ -a.s. to zero 

of π
nM .

We have due to the left-hand-side part of (2): for any 0>ε

.}
2

||||:{}||||||)(:||{
11 1

1

∞<>+≤>−
∞∞

= +

+ επμελ π
nn

k
nl

n

k

k
l VMVurau

n

n

 (4)

Since 0→π
nM ..sak −μ  and 0→nV , (4) implies (1). 

4. Condition (1) expressed in terms of coefficients. 

In the light of Theorem 1 of interest are conditions ensuring condition (1) in terms of coefficients )( la . A rich

source of such conditions is provided by the fact that (1) is implied by the convergence a.s. of ll ra
∞
1

.

Theorem 2. Each of the following conditions (i), (ii) and (iii) implies the convergence a.s. of ll ra
∞

1
, and

therefore implies condition (1) for any ),( nkk = ,...,1 211 kkk <=  ; Under the conditions of Theorem 1  each of the

conditions  (i), (ii) and (iii) ensure the convergence of 
∞
1 )(laπ  to S  for kμ -almost all π -s.  

(i) X  is a general Banach space and 
∞ ∞<
1

||)(|| laρ  , where ρ  is the modulus of smoothness of X ; 

(ii) X  is a Banach lattice of some cotype ,q ∞<≤ q2  and 

2

1

1

2 )||(
n

la  converges in X  as ∞→n ; 

(iii) ),,( νΣ= TLX p  , ∞<≤ p1 ,

where the measure ν  is σ-finite, and 

∞<
∞

)()|)(|( 2

1

2 tdta
p

T

l ν  . 

The fact that the convergence of ll ra
∞
1

 follows from (i) was proved in [7] ; that it follows from (ii) was 

proved in [8]; and that (iii) coincides with (ii) for pL -spaces, ∞<≤ p1 ,  can also be found in [8]. 

5. The existence setting in the case of constant summands. 

In the 1960s and 70s the problem of existence of a permutation ensuring the convergence of a series was very

popular. It is closely related to the famous problem on the structure of the sum range of a conditionally convergent

series in finite-dimensional and infinite-dimensional spaces (see the monograph [9]). Obviously Theorems 1 and 2
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give as corollaries some existence conditions. All the existence results listed below follow from these theorems. For 

additional information the reader is referred to [9,7,3]. The first result for the infinite-dimensional case was found by

M.I.Kadets [10] where he has shown the existence of the desired permutation under the condition ∞<∞ d

la
1

|||| ,

where ),2(min pd = . Later on his students have shown in [11,12] the existence of the permutation under condition

(i) of Theorem 2 for a general Banach space. Then in [13] much weaker condition (iii) of Theorem 2 in the existence
setting was found for pL -spaces, true, only for 21 ≤≤ p  (as we know from Theorem 2, the result holds for all 

∞<≤ pp 1, ). Further, as we already noticed, Theorem 1 implies the sufficiency of (1) and therefore, the 

sufficiency of the convergence of ll ra
∞
1

 for the existence of a desired permutation. This fact which is considered 

to be the most effective general condition in the infinite-dimensional case was established in [5], and independently

in [3,7] by different methods. For the sake of completeness of presentation let us give the following strongest

existence result which does not follow from Theorems 1 or 2. 

Theorem 3. Let
∞
1 la  be a series in a normed space X such that = n

n

k
lk aS

1
, Nn ∈ , converges to XS ∈ .

Then there is a permutation NN →:π  such that 
∞ =
1 )( Sa lπ  provided that the following σ -θ -condition is 

satisfied: 

For any permutation NN →:σ  there is a sequence of signs ,...),( 21 θθθ =  such that the series lla θσ
∞
1 )(

converges in X .

Theorem 3 was proved in [14] and independently by use of a different method in [15]. Obviously, the σ -θ -

condition is weaker than the convergence of ll ra
∞

1
 . Moreover, in the finite-dimensional case the σ -θ -

condition is satisfied, if just 0→la as ∞→l . Hence, Theorem 3 for a finite-dimensional X gives the Steinitz 

theorem [16] saying that Theorem 3 holds true, if 0→la  as ∞→l . However, convergence of ll ra
∞
1

, although

much stronger than the σ -θ -condition, according to Theorem 1, ensures more: convergence of 
∞
1 )(laπ  for kμ -

almost all π -s. 

6. Equivalence between the convergence of series for almost all signs and almost all 
permutations. 

Let 
∞
1 la be a convergent series in a normed space X . We say that it converges for almost all simple

permutations, if for each sequence ),( nkk = ,...,1 211 <<= kkk

1}:{
1

)( =Π∈
∞

convergesa l
kk

ππμ .

Applying Theorem 1 to each sequence of the partial sums of a convergent series we come to the following 

assertion. 

Theorem 4. Let
∞
1 la  be a convergent series in a Banach space X . The following are equivalent. 

(i) ll ra
∞
1

 converges a.s. in X ;

(ii)
∞
1 la converges in X for almost all simple permutations. 

7. Random series: Convergence almost surely for almost all permutations. 

Here we apply Theorem 1 to series of random variables. By virtue of the Fubini theorem we can state the 

following corollary to Theorem 1.
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Theorem 5. Let )( kξ  be a sequence of random variables defined on ),,( PA, and taking values in a normed 

space X  such that a sequence of partial sums = n

n

k
lkS

1
ξ , Nn ∈ , converges P -a.s. to an X -valued random

variable S . In order that 
∞
1 )(lπξ converges to S Pk ×μ -almost surely, it is necessary and sufficient that  

01

1
→+

+
n

n

k

k ll rξ P×λ -almost surely (5)

where Nnrn ∈),(  is the sequence of Rademacher functions defined on ]1,0[  with the Lebesgue measure λ and

)( nkk = , ...1 21 <<= kk  . 

Let us remark as in the case of constants in Section 3 that the condition 
∞
1 ll rξ  converges P×λ -almost surely (6)

is stronger than (5) and therefore implies the Pk ×μ -almost sure convergence of
∞
1 )(lπξ . The condition was 

stated in [17] as an existence condition. Although not necessary, (6) proves to be convenient especially when the 
sequence )( nkk = is not known. Another benefit of (6) is that for the classes of Banach spaces, in contrast to (5), it

can be expressed effectively in terms of individual summands lξ -s (see Section 3). We don’t give here all the 

corollaries, instead we restrict ourselves with the case of scalar lξ -s that leads in the existence setting to the famous

Nikishin and Garsia theorems. 

Corollary. (a) (Nikishin, [2].) Assume a series 
∞
1 lξ  of real or complex random variables converges in 

measure and ∞<∞ 2
1

|| lξ  a.s. Then there exists a permutation NN →:π  such that 
∞
1 )(lπξ converges a.s. 

(b) (Garsia, [1].) Let ),,()( 2 νϕ Σ⊂ TLl be an orthonormal system and )( lα be real or complex coefficients with 

∞<∞ 2

1
|| lα . Then there exists a permutation NN →:π  such that )(1 )( ll ππ ϕα∞

converges a.s. 

In [18] we have found a simple straightforward way of proving the Garsia inequality that leads to Corollary (b). 

The method based on inequality (2) we used in this paper can be applied to different areas of probability and

analysis to get the existence or massiveness of a.s. convergent rearrangements of normalized sequences. In this way

we have found various formulations of the strong laws of large numbers under rearrangements [19, 20]. 
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maTematika

funqcionalur mwkrivTa krebadobis ekvivalenturoba

TiTqmis yvela niSnisa da TiTqmis yvela

gadanacvlebisaTvis

s. Cobaniani
*
, S. leventali

**
, v. mandrekari

**

*
  niko musxeliSvilis gamoTvliTi maTematikis instituti

**
  miCiganis universitetis (aSS) albaTobisa da statistikis ganyofileba

(warmodgenilia akademikos n. vaxanias mier)

cnobilia, rom lla θ∞
1

 mwkrivis krebadoba banaxis sivrceSi )( lθ  yvela niSnebis mimdevrobisaTvis

ekvivalenturia 
∞
1 la  mwkrivis krebadobisa yvela gadanacvlebisaTvis. Cven vpoulobT am faqtis

analogs im SemTxvevisaTvis, roca niSanTa yvela mimdevrobis nacvlad Cven gvaqvs krebadoba TiTqmis

yvela niSanTa mimdevrobisaTvis. miRebuli Sedegebi axalia skalarul SemTxvevaSic. Cven viyenebT

miRebul Sedegebs e.nikiSinis Semdegi amocanis gamosakvlevad: davuSvaT SemTxveviT sidideTa 
∞
1 lξ

mwkrivis kerZo jamebis qvemimdevroba ikribeba S  SemTxveviTi sididisaken. ra SezRudvebiT arsebobs

mwkrivis S -ken krebadi gadanacvleba?
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