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ABSTRACT. We investigate cyclic configurations and moduli spaces of spherical quadrilaterals. For
nondegenerate quadrilateral linkage, we establish that cyclic configurations are critical points of the signed
area function on moduli space and their number is determined by the topology of moduli space. We also find
the maximal value of the signed area on moduli space. © 2009 Bull. Georg. Natl. Acad. Sci.
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1. We deal with spherical linkages defined as follows. Let S be a unit sphere in three-dimensional Euclidean
space R3 and d be the distance function defined by the induced Riemannian metric on S [1]. Given a natural number
k, a spherical k-linkage L is defined by a k-tuple of nonnegative real numbers li<π (called sidelengths of L) each of
which is not greater than the sum of all other ones [2]. The configuration space CS(L) of spherical linkage L is defined
as the totality of all k-tuples of points vi∈S such that d(vi,vi+1)=li. Each such collection of points is called a configu-
ration of L. Factoring this set over the natural diagonal action of SO(3) one obtains the moduli space MS(L) of
spherical linkage L [2]. As in the planar case, moduli spaces are endowed with natural topologies induced by distance
making them into compact topological spaces [2].

Applying a homothety with center at the origin and coefficient R we obtain a spherical linkage R*L with
sidelengths  Rli on sphere SR of radius R and can define its moduli space in SR. It is of course obvious that the moduli
spaces of L and R*L are homeomorphic. Notice also that if we multiply all sidelengths by the same number r<1, the
corresponding linkage rL  has the same moduli space in S as L itself. These two observations will enable us to describe
the topological type of moduli spaces of certain spherical quadrilaterals (see below Theorem 1), which is needed for
formulating the main result of this note. Notice that moduli spaces of planar quadrilaterals were thoroughly studied
in [3] (cf. also [4, 5]).

By analogy with the case of planar polygons, under a cyclic spherical polygon we understand a polygon which
can be inscribed in a circle lying on S, i.e., there exists a point (center of circumscribed circle) equidistant from all
vertices of the polygon (see, e.g., [6]). Study of cyclic planar polygons has a long history starting with elementary
classical results such as Ptolemy theorem and Brahmagupta formula (see, e.g., [6]). Important results on existence
and geometry of cyclic planar polygons were obtained by J.Steiner [6]. The study of cyclic planar polygons continues
to attract considerable interest, in particular, due to the results and conjectures of D.Robbins concerned with compu-
tation of areas of cyclic planar polygons [7]. A close relation between cyclic configurations and topology of the moduli
space of planar polygonal linkage was established in [8]. For planar quadrilaterals, the general constructions and
conjectures of [8]  were elaborated and developed in [9]. The aim of this note is to extend some results from [8] and
[9] to the case of spherical linkages introduced above. Our main result (Theorem 3) states that the cyclic configura-
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tions are critical points of the signed area function for a spherical quadrilateral linkage L as above and their amount
is determined by the topology of moduli space MS(L).

2.  Let us begin with a few general remarks on moduli spaces of spherical linkages.  Notice first that, by complete
analogy with the planar case, the moduli space of a linkage L as above can be identified with the subset of  configu-
rations such that v1 = (1, 0, 0), v2 = (cos l1, sin l1, 0). Assuming that this is always the case it is easy to realize that
MS(L)  can be represented as a level set of a certain proper smooth mapping between affine spaces of appropriate
dimensions which is called the linkage mapping (cf. [4]). By a standard application of Ehresmann fibration theorem
we conclude that, for generic values of li, the moduli space MS(L) has a natural structure of compact orientable
manifold of dimension k – 3. As was shown in [2], the condition of genericity appearing in the last statement can be
made quite precise. Following [2] let us say that linkage is degenerate if it has a configuration all vertices of which
lie on the same great circle of S. A minute thought shows that this happens if and only if there exists a k-tuple of
“ s i g n s ”  si= ±1 such that Σsili=0.

Proposition 1.  ([2]) The moduli space MS(L)  is a smooth manifold if and only if linkage L is not degenerate in
the above sense.

This was proven in [2] in the framework of general theory of linkages. In the case of a spherical quadrilateral
which we only consider in the sequel, the linkage mapping can be written explicitly in the following form:

R6 = R3 × R3→ R5 = R3 × R2,

(x,y,z,u,v,w) → (arccos (xcos(l
i
)+ysin(l

i
)), arccos (xu + yv + wz), arccos (u), x2 + y2 + z2 =1, u2 + v2 + w2 =1).

It is obvious that, for generic sidelengths, such a moduli space is a smooth compact one-dimensional manifold,
i.e. it has a finite number of connected components homeomorphic to circle S1.  For a smooth moduli space, a natural
idea is to investigate its topology using Morse theory of some natural smooth function on it. According to [8], in the
planar case an appropriate function is given by the signed area A [6]. Obviously, the signed area is also defined for
any spherical configuration as above and we denote by AS the corresponding function on moduli space Ms(L).

As was shown in [8], cyclic configurations can be interpreted as critical points of function AS .  In order to obtain
similar results in our setting it is necessary to obtain first results on the moduli spaces and cyclic configurations of
spherical quadrilaterals. At present we only have complete results for, so to say, “not too big” linkages. Namely,
following [2] we say that a linkage on certain sphere SR  is moderate  if its perimeter is strictly less than  the length
of the great circle. Obviously, this condition is preserved by homotheties. Notice that all configurations of a moderate
linkage in S with the two vertices fixed as above, belong to the same hemisphere of S. Thus the stereographic
projection П of S on the tangent plane at point  v1=(1,0,0) defines a one-to-one mapping on MS(L). Since for big R
the distortion of П is small compared with sidelengths, it appears possible to relate moduli spaces of moderate
linkages to those of planar ones.

Proposition 2. The moduli space MS(L) of a moderate spherical linkage is homeomorphic to the moduli space
of planar linkage L* with the same sidelengths [2].

This statement is presented in [2] without proof. In the framework of our approach the proof can be obtained as
follows. First of all, our interpretation of moduli spaces as the fibres of quadratic mapping enables one to show that
they continuously depend on the sidelengths vector with respect to the Hausdorff distance. Next, we apply a homothety
with coefficient R > 1 and consider linkage R*L in the sphere of radius R, which as we know does not change either
the topological type of moduli space or the moderacy of linkage. Then we shrink all sidelengths R times, which also
does not change the topological type of moduli space and of course does not violate the moderacy condition (since
R > 1). Thus we conclude that a moderate linkage can be embedded in the sphere of arbitrary big radius R without
changing the topological type of its moduli space. Notice now that, for sufficiently big R, the moduli space MS(R) is
close to the moduli space of the planar linkage with the same sidelengths. Since the linkage is nondegenerate we can
apply the Ehresmann theorem and conclude that the two moduli spaces are in fact homeomorphic as was claimed.

This result combined with the results of [9] enables us to derive a complete topological description of moduli
spaces of moderate quadrilaterals.

Theorem 1. The moduli space of nondegenerate moderate spherical quadrilateral can be homeomorphic either
to circle or to disjoint union of two circles. The number of components is one,  if the sum of the longest and shortest
sides is bigger than the sum of to other sides. In the opposite case the number of components is two.
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Applying the same reduction to the planar case we also obtain detailed information on cyclic configurations.
Notice that the notion of convexity is naturally defined for each subset of S with diameter not exceeding 2π, in
particular,  for each configuration of a moderate linkage.

Theorem 2. Each nondegenerate moderate spherical quadrilateral has a convex cyclic configuration. The
number of cyclic configurations is two if the sum of the longest and shortest sides is bigger than the sum of two other
sides. In the opposite case the number of cyclic configurations is four.

Corollary 1.  The number of cyclic configurations is two times the number of components of the moduli space.

3. It is easy to see that AS is a differentiable function on moduli space of nondegenerate moderate spherical
quadrilateral Q. Thus we can consider its critical points and it turns out that they are always nondegenerate in the
sense of Morse theory.

Proposition 3. The signed area AS is a Morse function on the moduli space of  nondegenerate quadrilateral
spherical linkage L.

The proof is derived from the analogous statement for planar linkages using the stereographic projection Π
described above. Under our conditions Π is a diffeomorphism so the Hessians of AS and of the area function on the
moduli space of the corresponding planar linkage appear conjugated by the differential dΠ. The statement follows
since in the planar case the Hessian of area is nondegenerate according to [8].

After these preparations we are able to formulate the main result of this note.
Theorem 3. Let Q be a nondegenerate moderate spherical quadrilateral linkage. Then all critical points of the

signed area function AS on moduli space MS(Q) are given by the cyclic configurations of Q. In particular, AS attains
its maximum at the convex cyclic configuration.

Since our assumptions imply that the moduli space is one-dimensional and AS is a Morse function, its critical
points can be either maxima or minima. Consider first the configuration V at which AS attains its maximum on
MS(Q). Then using a natural analog of Steiner’s classical  four-linkage method one can show that V is cyclic. It
follows that the global minimum of AS is attained at configuration V* which is obtained from V by the geodesic
reflection in the first side of Q (by our agreement the latter lies on the equator of S). For local extrema the proof is
more complicated and involves analysis of infinitesimal displacements in the tangent space to MS(Q).

In our opinion, this result reveals curious aspects of spherical linkages and suggests interesting problems some
of which are mentioned in the sequel. In particular, it is now easy to relate the number of cyclic configurations to the
topology of moduli space.

Corollary 2. The number of critical points of AS in MS(Q) is two times the number of components of moduli space
MS(Q).

In topological terms these results mean that AS is a perfect Morse function on MS(Q) (cf. [8]).  It seems remark-
able that the maximum Σ of AS on MS(L) can be explicitly computed as follows. Let a, b, c, d  be the sidelengths of
Q and p be its half-perimeter.

Proposition 4.  One has:
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where tan stays for the usual tangent function.
The proof of the proposition is obtained by decomposing the convex cyclic configuration into a union of two

triangles and then applying the S = α + β + γ − π formula for the area [1] and well-known formulae for the angles
of spherical triangle in terms of scalar products of radius-vectors of its vertices (all necessary results of spherical
trigonometry can be found in Ch.18 of [1]). This formula can be considered as a natural analog of the classical
Brahmagupta formula for the area of cyclic planar quadrilateral [6].

There also exists a similar formula for the value of a local minimum of AS but we were not able to bring it to a
compact form like the one above. Thus we obtain rather complete information on critical points of AS on moduli
spaces of moderate spherical quadrilaterals.

It is now quite natural  to wonder if similar results hold for spherical k-linkages with arbitrary k (Problem 1) and
what happens for linkages with perimeter bigger than the length of the great circle (Problem 2).

We do not have substantial results in either of these directions and conclude with a few related remarks. First of
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all, the nice relation between the topology on moduli space and number of cyclic configurations is not preserved for
k > 4. Already for spherical pentagons it is  impossible to determine the number of cyclic configurations from the
topology of MS(P) because there exist pentagons P, P′such that MS(P) is homeomorphic to MS(P′) but P and P′ have
a different number of cyclic configurations. Examples of such pentagons were  found by the first-named author using
computer experiments based on the second-named author’s algorithm for calculation of the local degree. This im-
plies, in particular, that A is not always a perfect Morse function on moduli spaces of pentagon linkages and we are
led to the problem of characterizing those sidelengths for which A is a perfect Morse function on M(P) (Problem 3).
We believe that each of these three problems is quite promising and intend to continue investigation of spherical
linkages within the setting outlined in this note.
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