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1. First-Order Canonical Nonlinear Equation. Problem Statement

Let us consider an equation
(p= AW, X) = Ft € I =y o) =o0, 0 p =2 M

where A=A(?), F=F(f), t € I are given n x n matrices with continuous elements on the interval I, h=h(¢.X), t € I is
a given arbitrary admissible » x » matrix function, X is an unknown » X » matrix.

Here and everywhere an admissible function will be called any function in respect to which operations
presented in the article are valid on the whole interval 7.

Definition 1. The solution of equation (1) will be called matrix function X=X(#) defined on the interval /,
substitution of which in equation (1) is admissible as a result of which we get the identity.

Definition 2. Let 7, be an arbitrary fixed point of the interval / and X, be arbitrary fixed constant of matrix
n x n. Matrix function X(¢, C;) defined on the interval / and depending on arbitrary constant C, of matrix » x n will
be called the general solution of equation (1), if X(¢, Cy), ¢ € I is a solution of equation (1) satisfying the initial
condition X(#y, Cy)=Xj.

The basic problem consists in constructing the general solution of equation (1).

2. Regular Matrices. Main Theorems

To construct the general solution of equation (1) we shall need a matrix function of regular matrix.
Definition 3. Matrix R=R(¢) with continuous elements r; (),i, j=1,n, t e I will be called a regular matrix if

there exists » x n matrix function @®( IRdt) definite, continuous and continuously differentiable with respect to ¢ on

the interval /, satisfying the conditions:
o det)=RcD(dez); 50 det),

o ( j Rdt)q) (IRdt): @(IRdt)dfl (IRdt): E, tel,

where F is a unit matrix.
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Theorem 1 (Basic Theorem). [f the matrix A=A(t), t€l, is regular and the admissible matrix function

X=X(t, Cy), t €I satisfies the condition
h(t, X) = CD(_[Adt)(CO + jd)‘l (IAdt)th), tel,

then X(t, Cy), t €1 is a solution of equation (1).

Proof. We have

ph(t,X)= Acb(jAdz)(cO + fo ( | AdiJFdt)+ F, e 1,
ie.
Ph(t,X)— Ah(t,X)=F, Vtel.

Theorem 1 is proved O

Let h(£,X)=g()q(X), tel, VX, where g=g(#), g=q(X) are arbitrary admissible functions.

From Theorem 1 it follows

Theorem 2. Let the matrix A=A(t), t € I is regular, g=g(t), t € I, q=q(t), YVt are arbitrary admissible
scalar functions and 37", i.e.

¢ q()=q9" (1) =7, V.

If there exists the admissible matrix function
X=¢" E o | adr)(cy + [o! ( | Adt)th)} tel, 2)

then matrix function (2) is the general solution of the equation
(p-AgM)qg(X)=F,tel. (©))
Proof. From formula (2) it follows

2(t)g(X) =c1>( j Adt)(Co + j ! ( j Adz)th), tel
Consequently (see Theorem 1) matrix function (2) is a solution of equation (3).
Let #, be an arbitrary fixed point of the interval / and X; be an arbitrary fixed constant of matrix # x n. Assume
that X(#))=X,. Then from formula (2) it follows

Cy = g(to)q)_l( j Adz) e (X ) jqu( j Adt)th

=t *

Theorem 2 is proved O
From Theorem 1 it follows
Theorem 3. Let the matrix A=A(t), t€l is regular, G=G(t), tel, q=q(t), VYt are arbitrary admissible
functions and 3¢~ i.e. ¢'q(r)=qq ' (r) =7, V7.
If there exists the admissible matrix function
x=go | adi)(cy + [o! ( | Adi)Fdi)-G), 1<, “
then matrix function (4) is the general solution of the equation
(P=-ADIG+qX)]=F,1el. (%)
Proof. From formula (4) it follows

G+q(X)= cp( j Adt)(Co + j qu(J'Adr)th), tel

Consequently (see Theorem 1) matrix function (4) is a solution of the equation (5).
Let 7y be an arbitrary fixed point of the interval / and X, be an arbitrary fixed constant of matrix # x #. Assume
that X(#)=Xo. Then from formula (4) it follows

=o' | Adt)‘,zto a(xo)-| fo (jAd:)th 4]

t=t,

Theorem 3 is proved.
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3. Criteria of Regularity

Theorem 4 (Criterion of Regularity). Let G =G(¢) = (g’] (t)) tel, be an arbitrary n X n matrix with
continuous and  continuously  differentiable  elements g’] ®),i,j= m on the interval I Let
P(G) = ay(E + a(1)G() +---+a, (Z)Gk(t), tel, where a,(t),m =ﬁ tel, are arbitrary continuous and
continuously differentiable scalar functions.

Let detP(G)=0,Ytel. Let R=P(G)P(G),tel,and EQ(IRdt)= P(G),tel. Then matrix R, tel is

regular.
Here the dot stands for the derivative d/dt.
Proof. We have
3@*‘( dez): P(G),tel, and cb( dez): P(G) = RP(G) = Rcb( dez), tel.
Theorem 4 is proved. O

Corollary 1 (Criterion of Regularity). Let k=1 ay(t)=0, ay(t)=1, 1€, detG() =0, tel,
R= G.(t)(f1 ), tel, and EQ(IRdZ)= G(t), t € I.Then matrix R, t e I is regular.

4. Applications

4.1. General Solutions of First Order Nonlinear Scalar Differential Equations
Let us consider the equation
(p-a) g(0) ()=, tel, (6)
where a=a(?), f=(t), g=g(?), t € I, g=q(x) are given arbitrary admissible scalar functions.

If n=1, from Theorem 2 it follows
Result 1. If a=a(?), /=1, g=g(?), t€ 1, q=q(x) are arbitrary admissible scalar functions and 3q~", i.e.

qilq(x) = q(f1 (x) = x, then the general solution of the equation

¢ ik (- aglq) = f. 1<, ™)
x
has the form

x=q{éeiadt(co+]‘ejadtfdtﬂ, tel. ®)

Remark. In this case @(Iadt): e Jaa , tel.
For example, the general solution of the equation
gx+ fe* +(ag—¢)=0, tel,
where a=a(?), f=f(t), g=g(¢), t € [ are arbitrary admissible functions, has the form

x:—ln{lejadt(co + J‘ejadtfdtﬂ, tel

g

Remark. In this case g(x)=¢™, Vx.
If g =1, ¢t €I, the general solution of the equation

x+ f()e* +a(t)=0,tel,

has the form
(0)dt

x=— Ja(t)dt—ln(co+ je’J" f(t)dtj, tel.
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If n =1, from Theorem 3 it follows

Result 2. If a=a(s), f[=f1), g=g(t), t <, g=q(x) are arbitrary admissible scalar functions and Equl, ie.

qilq(x) = q(f1 (x) = x, then the general solution of the equation

%x—aqu)—(fwg—g‘):o, rel,
X

has the form
x=q~ [ejadtco —-g+ J‘efjadtfdt} tel.

For example, the general solution of the equation
x—atgx—(f+ag—g)secx=0,rel,
where a=a(t), f=f(f), g=g(f), t €I are arbitrary admissible functions, has the form

x= arcsin{e Iadt(co + J‘ejadtfdtj—g}, tel
Remark 2. In this case g(x)=sin(x).
5. Nonlinear Matrix Differential Equations (Examples)

a,p

Example 1. Let G=(
, &

a (ﬁ
a#0, Vieland A=GG™", tel. ie A=|% \&

B
| - s
is regular if 30( [Ad) =G, re1=® "7 g :(Z ﬁ], el
N

0, lna
Ine, ﬁ
a
Let us consider the matrix function e JAdt =e 0, na ,tel.
We have (see [1])
IAdt a)ﬁ , te Ji
0,

Hence, EI(D(IAdt)z I G rer= th’l('[Adt

=
I

a
a

7\
.

Let us consider the equation (3), where 4 =

0

RIR R[>

From Theorem 2 it follows

11 aaﬁ 1 aa_ﬁ
X=¢q 1|:E(0,0!j(60+'[?(0»0! det]:l, tel.

. |
For example, if g(X)=X*, g(t) =

=—,F=0,Cy=E, u—Vconst #0, t # 0, we have
t
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], tel, where a=a(t),p=p(t),tel,are arbitrary admissible functions. Let

j , t € I.From Corollary 1 it follows that matrix 4, t €/,

G, tel,and matrix A, rel, is regular.

, g q are arbitrary admissible functions.
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- i\,B
X:{t(%’ﬂj:lﬂ, tel,ie(see[1]) X=(an)*| ua | X"zt(a’ ], tel
N7

From the equation (3) it follows

~
|
SETEN
VR
R >
~—

N (ﬁ)'
_Xﬂz[d’ﬂJ_ a’ a
0,a

0, — 0

R KR

Consequently, the particular solution (C, = E) of the equation

6]
p—| & \& 1X”:O,te],

0, &
a
where a = a(t), = (t), tel are arbitrary admissible functions, y — Vconst # 0, has the form
B
X=()"| pal| tel o
0, 1

a, 0 . ..
Example 2. Let G = ( 5 j, tel, where a=a(t)#0, Vtel, f=/p(t), tel,are arbitrary admissible
,a

2 9
) a
functions. Let A:GG’I, tel,ie. A= . |, tel
By a
a)’ «a

Hence, matrix 4 is regular if EI(D(IAdt): G, t € 1. Let us consider the matrix function eJ Adt
have (see [1])

, tel. We

[Adt _(e,0 . . :
e = 5 =G, tel,ie,3O[Adt =G, tel,and matrix 4, ¢ I, is regular.
,Q

2 0
a

Let us consider equation (5), where 4= . | tel, q(X):eX, G=g)E,g=g(),tel, is an
[ ] p

arbitrary admissible scalar function.

If 37" (X) =1In X, then from Theorem (3) it follows that the general solution of equation (5) has the form

X = h{e IAd’(co+ j e’f”‘d’Fdz)— g(t)E} tel,

a,0 1 a, 0
X= 1n|:( j(coﬂ—z( JthJ - g(t)E} tel
,a a’\-p.a

a,0
For example, let C, = E, F:[ J, tel.
a

>

ie.

We have
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X = 1n|:((1+t)a—g, 0 H, tel.
(1+0p, (I+a—-g

Consequently (see [1]), if 1+0))a—g>0, Vriel,

In[(1+ ) — g, 0
X = tel 11
W05 s na-grf <" (b
(I+a-g
1+)a -
eX=(+)a & 0 , tel.
a+0p, A+Ha—-g
Hence, the particular solution (C,, = E) of the equation
- O 0 0
a
p- . . & +e¥ |= “ ,tel,
e
a) a

where a =a(t) #0, = F(t),g = g(t) <(1+1t)a, t €I are arbitrary admissible functions, has the form (11).

In conclusion we must notice that the related problems are investigated in [2-4].
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