
saqarTvelos mecnierebaTa erovnuli akademiis moambe ,,,,, t. 33333, , , , , #33333, , , , , 20020020020020099999
BULLETIN OF THE GEORGIAN NATIONAL ACADEMY OF SCIENCES, vol. 3, no. 3no. 3no. 3no. 3no. 3, 200, 200, 200, 200, 20099999

© 2009 Bull. Georg. Natl. Acad. Sci.

Informatics

Problems of Verification of Functional Programs

Natela Archvadze*, Merab Pkhovelishvili**, Lia Shetsiruli***

* I. Javakhishvili Tbilisi State University
** Niko Muskhelishvili Computer Mathematics Institute, Tbilisi
*** Shota Rustaveli State University, Batumi

(Presented by Academy Member G. Gogichaishvili)

ABSTRACT. Program verification arguments are considered together with structural and transfinite induc-
tion methods. The nature of an abstract program for the functional programming language LISP and its
mechanical verification problems are discussed. © 2009 Bull. Georg. Natl. Acad. Sci.

Key words: functional programming, programs verification, recursive function, induction method.

Programmers generally agree on the difficulty of writing a correct program, or of a program that would fulfill
its purpose without errors. Large-volume programs frequently contain errors that can bring forth undesirable out-
comes. Of course, there is a risk that software itself may not be error-free. Such errors are not, however, the theme
of our discussion.

One of the methods of program proof is the testing of programs, although the possible options of data are so large
and numerous that the testing process itself can not be guaranteed from errors.

In order to be fully aware of a program’s accuracy, a method of mathematical verification is used, by which the
program accuracy for all the possible data is being proved theoretically. A program realized in a rather precisely
defined programming language has a clear-cut mathematical notation. Similarly, requirements to a program can be
expressed in a mathematical language and logic, as an exact specification. Verification makes it possible to strictly
argue the compliance of a program with its specification. Such formalism has a significant advantage over testing,
for it states the program correctness once and forever, possibly for a whole class of programs.

Studies in verification are conducted rather for the program languages which are easier to “read” and whose texts
can be processed in the same languages, for example functional language. Moreover, special languages are created
to simplify verification of the programs written in them. At present, there are verifiers for problems of a limited area,
or/and for specific structures of programs. We shall deal with the problems of verification of programs written in
functional programming languages for such structures as recursion and, also, conditional statements. The reason of
this is that the loop statements existing in the programming languages can easily be presented in them as recursions
of various types.

Let us consider verification problems for individual cases.
I. Proof by induction is used for recursive functions, the arguments of which are numbers by which changes take

place.
For example, the factorial function is defined for any positive number X:
F(X) ≅ IF (X=1) THEN 1
 ELSE OTHERWISE X * F (X-1)

58 Natela Archvadze, Merab Pkhovelishvili, Lia Shetsiruli

Bull. Georg. Natl. Acad. Sci., vol. 3, no. 3, 2009

In [1] the proof of its accuracy is given by the traditional method of proof by induction. To consider the program
operation, let us complete when the argument is n:

F(n) = n * F(n-1) = Since condition n=1 is false, therefore F(n)=n*F(n-1).
Now F(n-1) is to be computed, or a recursive reference to F.

= n *(n-1) * F(n- 2) = Since in computing F (n-1) condition, n-1=1 is false,
therefore F (n-1) = (n-1)*F (n- 2).
etc.

=n *(n-1) *(n- 2) *… Since condition 2=1 is false, therefore F (2) =2*F (1).
* F(1) =
= n *(n-1) *(n- 2) *…* Since condition 1=1 is true, therefore F (1) =1.
2 * 1 =
= n!

II. Structural induction technique is used for such recursive functions, the arguments of which are not numbers
but structures. Accuracy of such programs can be proved as follows:

1. Let us prove that the program operates correctly for the most important data (arguments of function).
2. Let us prove that the program operates correctly for more complex data (arguments of function), assuming that

it is correctly operating for relatively simple data (arguments of function). For functional programming languages,
for example for LISP, we assume that induction is fulfilled according to the list size.

For instance, let us refer to the LISP function MEMBER definition and its proof by the structural induction
technique [Anderson]:

MEMBER (X, L) = IF L = NIL THEN FALSE
 ELSE IF X = CAR (L) THEN TRUE
 ELSE OTHERWISE MEMBER (X, CDR (L)).
The program analysis shows that reference to the second argument of the MEMBER function is simpler because

CDR (L) contains one element less than the list L. The proof is in the following: 1. Let us prove that for any zero-
element list the MEMBER function operates correctly. True, MEMBER (X, NIL) =FALSE, since X is not a member
of NIL. 2. Let us prove that if the program MEMBER operates correctly for the N-element (upper level) list L1, then
it operates correctly for all the lists containing the N+1 element at the upper level. The induction hypothesis will be
the following:

MEMBER (X, L1) = TRUE if X is an element from L1,
 = FALSE in other cases.
Assume L is the list containing the N+1 element. Since N+1≥1, therefore L≠NIL. Complete the function:

MEMBER (X, L) = TRUE if X =CAR (L),
 = MEMBER(X, CDR (L)) in other cases.
If X =CAR (L) (note that CAR (L) is defined because L≠NIL), then X is an element of the list L and hence the

value TRUE is the required value. If X =CAR (L), then X will be an element of the list L only on condition that X
is an element of CDR (L). In addition, CDR (L) is the N-element list and, according to the induction hypothesis,
MEMBER(X, CDR (L)) will correctly compute the TRUE and FALSE values according to the condition that X is an
element of CDR (L), the proof of which was required.

III. Transfinite induction technique is a proof technique that represents generalization of mathematical induc-
tion for non-numerical values of parameters. It consists in the following: say M is fully an ordered set and P(x), when
x∈M is any proof. If P(y) is true, every y<x (any x∈M), it follows that P(x) is true, and if proof P(x0) is true, where
x0 is the minimal element of M, then P(x) is true for any x. It is noteworthy that under the Zermello’s Theorem, any
set can become fully ordered.

Mathematical induction is a private case of transfinite induction. True, when M is a set of natural numbers, then
transfinite induction will consist in the following: if P(1) is true and from the following proofs P(1), P(2), …,
proceeds the P(n-1) proof, then all P(n) will be true.

Consider the greatest common divisor finding the function gcd(m,n) for two natural m and n numbers:
<DE GCD (x y) (COND ((EQ y 0) x)

 (T (GCD (y (x MOD y >

Problems of Verification of Functional Programs 59

Bull. Georg. Natl. Acad. Sci., vol. 3, no. 3, 2009

This function is used for any numbers and not only for positive arguments. The greatest common divisor notion
should be extended. Introduce the correlation ′u|v′ when ′u is divisor of v′. It includes a pair of integers u and v, for
which ′v is the multiple of u′, or is found the integer d when v=du. It is said that d is the greatest common divisor
of x and y if:

• d|x and d|y
• for any integer d′, if d′|x and d′|y, then d′|d.

Proof of the function GCD is accomplished by using transfinite induction. It is necessary that a relation to it be
defined, so that further recursive calls would precede the former calls, which would guarantee termination of the
argument. In general, definition of a relation is not easy; however, sometimes introduction of the size that will
correlate the arguments to the respective numbers and reduce the numbers during recursion (to guarantee the recur-
sion termination) is enough. Such size for the given function GCD is |Y|. In [2], theorems are given that prove that
the operation of the function GCD terminates and its outcome is the greatest common divisor.

IV. Combined induction technique is used for verification of such complex functions whose arguments are
again recursive functions. For example, for functions of the following type:

ϕ (ϕ1(), ϕ2(), ..., ϕN ()), where each argument ϕ1(), ϕ2(), ..., ϕN () is a recursive function.
Therefore, cases with a mixed version represent special cases, being of considerable interest: a) the case when

each function ϕ1(), ϕ2(), ..., ϕN () is numerically stated and its recurrent values are also numbers, while the function
ϕ is operable on lists, and b) the case when each function ϕ1(), ϕ2(), ..., ϕN () is list-operable, while ϕ is operable of
numbers. In this case, separate use of the proof induction and structural induction techniques can cause errors;
therefore, their combined techniques should be used. For example, we have a composition of functions ϕ (ϕ1(L),
ϕ2(L)), where ϕ1(L) is the function that computes the maximum elements of the L list, ϕ2(L) – computes the
minimum, while ϕ circulates the simple mean of these arguments. In such a case, proof of ϕ1(L) and ϕ2(L) functions
is accomplished by using first the structural induction technique and then the proof-by-induction technique.

In the composition of functions, account should be taken of the circumstance that the computation of values of
the functions takes place from left to right, when the S-expression is straight rather than parallel. This can cause a
whole number of errors, for example, in the case when each function in the composition is database-operable and
replaces the data in the base.

V. Special program verification technique
The program verification history is known for the cases when special languages used to be created for the purpose

of simplifying verification of the programs written in them. An alternative approach to this is the necessity that a
generalized, abstract program for the given programming language be created and verified as accurate. It is necessary
that the program needing verification be automatically transferred to the form of an abstract program. In such a case,
it will not be subject to verification (because it will already be a particular form of a correct program).

The problem of automation of the program verification process in programming has retained its urgency to the
present day. In respect of the functional language LISP, this problem consists in the reduction of any program to the
abstract form and to its follow-up automated verification.

We offer the following verification algorithm:
a) To make a form of the so-called universal function (or functions) for the given programming language,

allowing to represent the recursive function of any type written in this language. Following it, the universal
function is to be verified. For this purpose the above-mentioned induction techniques will be used, an attempt
will be made to define the size (reflecting natural number arguments) finding algorithms certainly in the frame
of the given language.

b) To create construction transformers, i.e. the apparatus thanks to which constructions of one form, in particular,
loops and conditional representations, will be transformed into recursive constructions. If the transformers are
universal, then it will be possible to transfer loops and conditional representations to a recursive form for the
non-functional languages which will, in turn, make it possible to use the given algorithm for other languages.

c) If the given function that needs verification is recursive, then it will be transformed into a recursive function,
following which its accuracy will be proved automatically. If the given function contains loops and conditional
statements, then it, by means of the transformer described in paragraph (b) above, will automatically transfer
to the form of recursive and correspondingly universal functions. Thereafter, its accuracy will be proved.

In [3], two forms of recursive functions are given, which provide for the list processing possibility. These

60 Natela Archvadze, Merab Pkhovelishvili, Lia Shetsiruli

Bull. Georg. Natl. Acad. Sci., vol. 3, no. 3, 2009

functions have the following form in the LISP:
 <DE FUN(F F0 L)
 (COND((MEMBER NIL L)a)
 (T(g(f(M F L))
 (APPLY ‘FUN(CONS ‘F(CONS ‘F0(M F0 L>

or <DE FUN (A F F0 L)
 COND ((MEMBER NIL L)A)
 (T (FUN (g (f (M F Ø) a) (F F0. (M F0 L>
These forms were proposed for synthesis of functional programs, although they can be applied to verification of

functional programs as well. We assume that the transition of the system into a dialog mode in this process could
require additional information.

Thus, we have discussed for verification purposes such techniques as induction-by-proof, structural induction
and transfinite induction to prove the composition accuracy. We have also dealt with the form of an abstract program
for the programming language LISP and the problems of its computer-based verification. We would like to note that
in the process when the program is reduced to the form of an abstract program, the arrangement of a dialog mode
would be advisable.

informatika

funqcionaluri programebis verifikaciis sakiTxebi

n. arCvaZe*, m. fxoveliSvili**, l. Sewiruli***

* i. javaxiSvilis sax. Tbilisis saxelmwifo universiteti
** niko musxeliSvilis gamoTvliTi maTematikis instituti, Tbilisi
*** SoTa rusTavelis saxelmwifo universiteti, baTumi

(warmodgenilia akademiis wevris g. gogiCaiSvilis mier)

ganxilulia programebis verifikaciis mtkicebulebaTa, struqturuli da transfinituri
induqciis meTodebi. ganxilulia funqcionaluri programirebis ena LISP-sTvis abstraqtuli
programis saxe da misi avtomaturi verifikaciis sakiTxebi.

REFERENCES

1. P. Anderson (1982), Dokazatel’stvo pravil’nosti programm. Moscow (in Russian).
2. M.Pkhovelishvili (1984), Osnovnye formy rekursivnykh funktsii dlya obrabotki spiskov. Interaktivnye sistemy. Tbilisi (in

Russian).
3. N. Archvadze, M. Pkhovelishvili, L. Shetsiruli (2009), Kompleks proizvodstva programm dlya funktsionalnykh yazykov.

Kiev (in Russian).

Received June, 2009

