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Introduction 
The calculating process in groups often depends on a choice of group generating systems, which is particularly 

true for the case of computerized calculations. An adequate choice of generating systems may essentially facilitate 

both calculations and the proof of theoretical facts. As such a system an ordinary base is used in finitely generated 

Abelian groups, the Maltsev base [1] in nilpotent groups and the Hall base [2] (see also [3, 4] in free groups. It is 

known [1,5,6] that the bases play an important role in the theory of finitely generated Abelian groups. 

By constructing on an Abelian group A the Maltsev base, this group can be coordinated by means of vectors 

whose length is equal to some ordinal number λ  that depends on A. Furthermore, the Maltsev base enables us to 

construct a triangular representation of a group A by means of generating and defining relations. One part (Sections 1 

and 2) of this paper is dedicated to the exposition of these ideas, while in the other part (Sections 3 and 4) the 

following problem is solved. Given two Abelian groups and their respective Maltsev bases and triangular 

representations, it is required to construct by this information a Maltsev base and a triangular representation for their 

tensor product. The results obtained in this paper are used to prove the theorems on nilpotent groups of nilpotency 

class 3≤ . They are surely also helpful for generalizing these theorems to nilpotent groups whose nilpotency class is 

more than 3. 

Maltsev bases and triangular representations are nowadays widely used for calculations in polycyclic groups. In 

that case, bases consist of a finite number of elements, while representations contain a finite number of relations. 

It should be noted that V. Bludov’s work [7] deals with a more general notion of a base, namely, with the so-

called fiber base for groups. The present paper shares some ideas with V. Bludov’s work. 

All definitions and results on Abelian groups used in this paper can be found in the monograph [8]. 

 

1. Triangular Representations of Periodic Groups 

Let A be an Abelian group. 
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Definition 1.1. The set { }IitT i ∈=  is called the Maltsev base of the group A if 

1) the set I is completely ordered and it is assumed that its ordinal type is an ordinal number ρ ; 

2) for any ordinal number λ , ρλ ≤≤1  we denote λλ <= itA i . Then λλ At ∉+1 . λA  is a normal subgroup 

of 1+λA ; 

3) The group A is generated by the set T. 
The reduced order ( )1+λto  of an element 1+λt  is defined as follows: the reduced order is equal to a natural 

number m if λλ Atm ∈+1  and m is the smallest natural number with this property, and is equal to ∞  otherwise. 

From the definition of a Maltsev base it is obvious that 

 LL <<<<< +121 λλ AAAA   (1.1) 

is a strictly increasing chain of subgroups and AA =ρ . A factor group λλ AA 1+  is a cyclic group of order ( )1+λto . 

Therefore any element x from A can be uniquely written in the form 
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Let us introduce the notion of a triangular representation associated with the Maltsev base T. Suppose an 

element 1+λt  has a finite reduced order 1+λm . Then, by definition, λλ
λ Atm ∈+
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1
1  and therefore in view of (1.2) 
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and 121 +<<<< λkiii L . 

Denote by R the set of equalities of form (1.3) for all base elements with finite reduced orders. Then by induction 

with respect to ordinal numbers one can easily prove 

Proposition 1.2. A group A on the set of generating T’s has the representation  

 RTA |= . 

Proof. It is obvious that all relations from R are fulfilled on the group A. On the other hand, if the group has the 
representation RT | , then each of its elements can be written in form (1.2). Hence the proof follows.  

Definition 1.3. A representation of A in the form RTA |=  as described above is called a triangular 

representation of the group A associated with the base T. 
Let the group 21 AAA ⊕=  be a direct sum of the groups 1A  and 2A  for which the Maltsev bases 1T , 2T  and 

systems of triangular relations 1R , 2R  are known. We put 21 TTT U=  and 21 RRR U= . Let us perform a complete 

ordering of the set T as follows: any element from 1T  precedes any element from 2T , while inside these elements the 

previous order is retained. Then it can be immediately verified that the set T is the Maltsev base for the group A, the 

reduced orders of elements from A retain their initial values and R is the system of triangular relations for A. How to 

generalize this construction in terms of a direct sum for any number of summands is obvious. 

This reasoning proves  
Proposition 1.4. Let i

Ii
AA

∈
⊕= , and iT , iR  be given for any Ii ∈ , where I is a complete ordered set of indices. 

Then for defining the base and the system of triangular relations for the group A there exists a canonical procedure 

as described above. 
Let B be a subgroup of A and let ( )BT , ( )BR  and also ( )BAT , ( )BAR  be already constructed. Using this 

information, we will construct the Maltsev base and the system of triangular relations for the group A. 
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Proposition 1.5. Let 00 →→→→ BAAB  be a short exact sequence of Abelian groups. If the Maltsev bases 

and respective triangular repsentations are assumed to be given for the groups B and BA , then there exists a 

canonical procedure for defining the base and the system of triangular representations for the group A. 
Proof. For any element ( )BATt ∈  we choose its some pre-image t′  in the group A and denote by T ′  the set of 

all such pre-images for elements from ( )BAT . We assume ( ) TBTT ′= U  and perform the ordering of elements 

from T so that elements from ( )BT  would precede elements from T ′ , while inside these sets we retain the initial 

orders. Then it is clear that the resulting system is a Maltsev base, and its elements keep the initial reduced orders. 
Let us construct the system of triangular relations for A. For this, we use all relations ( )BR  unchanged, while in 

relations from ( )BAR  we replace each base letter t with its pre-image t′ . The left-hand part of a relation from 

( )BAR  will differ from the right-hand part by a multiplier from a subgroup B. We multiply the right-hand part by 

this element from B and write it in terms of the base of the subgroup B. The obtained relations will be the sought 

ones. 
Let A be a periodic group. Then A is a direct sum of its primary components pA . By virtue of Proposition 1.4 it 

is sufficient to construct the Maltsev bases only for the primary components pA . So, let A be a p-group. Let us recall 

the definition of a base subgroup for a p-group. A base subgroup B of the periodic p-group A is defined by the 

following conditions: 

1) B is a direct sum of cyclic groups whose orders are powers of the prime number p; 

2) B is a serving subgroup of the group A; 
3) BA  is a divisible group. 

In [7] it is proved that for any p-group A there always exists a base group B. Due to Propositions 1.4 and 1.5 it is 

sufficient to define the Maltsev bases and the system of triangular relations for the base subgroup B and the divisible 
group BA . 

Since the group B is a direct sum of cyclic groups whose orders are powers of the prime number p, by 

Proposition 1.5 it is sufficient to calculate the base and the system of triangular relations for the primary cyclic 
group, which can be done in a natural manner. The divisible group BA  is a direct sum of quasicyclic groups with 

respect to p. Therefore, by Proposition 1.4, it is sufficient to find the base and the system of triangular relations for a 
quasicyclic group ∞p

. We choose in it an element a of order p. Then the set of elements  

KK ,,,, 21 nn
p
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p

a
tat ===  

is the Maltsev base for ∞p
, and  

K,2,1,1 ==+ ntt n
p
n  

is the system of triangular relations. 

2. Auxiliary Results on Tensor Products 

All definitions and results on tensor products of Abelian groups used in this paper can be found in the 

monograph [7, Ch. 10]. Let us recall some facts needed for our discussion. 

1) If either a group A or a group C is p-divisible (divisible), then CA⊗  is a p-divisible (divisible) group. 

2) The inequality 
( ) ( ) ( )chahcah ppp +≥⊗  

is valid for the heights of elements. 

3) If either a group A or a group C is a p-group (a periodic group), then CA⊗  is a p-group (a periodic group). 

4) If A is a p-divisble group and C is a p-group, then 0=⊗ CA . In particular 0=⊗ CA  if A is a p-group and C 

is a q-group, where p, q are different prime numbers. Moreover, 0=⊗ CA  if A is a divisible and C a periodic group. 

5) If the inclusions mAa ∈ and [ ]mCc ∈  hold for some ∈m , then 0=⊗ ca  in the group CA⊗ . 
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6) If ( ) ∞=ahp  and C is a p-group, then 0=⊗ ca  in the group CA⊗  for any element Cc ∈ . 

7) There exists a natural isomorphism 
CC ≅⊗ . 

8) For any integer number m there exists a natural isomorphism 
( ) mCCCm ≅⊗ . 

In particular ( ) ( ) ( )tsr ppp    ≅⊗  where ( )srt ,min= . 

9) Let the groups A and C be direct sums, i
Ii

AA
∈
⊕= , j

Jj
CC

∈
⊕= . Then ( )ji

ji
CACA ⊗⊕≅⊗

,
. 

Theorem 2.1. If 

00 ⎯→⎯⎯→⎯⎯→⎯⎯→⎯ CBA gf  

is a serving exact sequence, then for any group G the sequence  

00
**

⎯→⎯⊗⎯→⎯⊗⎯→⎯⊗⎯→⎯ GCGBGA gf  

is a serving exact one. 

Theorem 2.2. If C is a p-group and B is a p-base subgroup of the group A, then we have a natural isomorphism 

CBCA ⊗≅⊗ . 

Theorem 2.3. For any groups A, C we have the isomorphisms 

 
( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( ).
,

CTCATACATCA

CTATACTCATCTATCAT

⊗≅⊗⊗
⊗⊕⊗⊕⊗≅⊗

 

3. Triangular Representations of Tensor Products of S-Groups 

We distinguish a wide class of Abelian groups for which the structure of tensor products can be calculated 

exactly. 
Definition 3.1. An Abelian group A is called a S-group if ( )ATA  is decomposed into a direct sum of groups 

everyone of which is   or  . 

Remark 3.2. As is known (see [7]), for any S-group A its periodic part is a direct summand. Hence A is 

representable in the form 
( ) ( ) ( )ADAFATA ⊕⊕= , 

where ( )AF  is a free Abelian group and ( )AD  is a divisible group. 

Let { }11 IitT i ∈=  be a Maltsev base of the group ( )AT  and 1R  be the corresponding triangular system of 

relations. Let further { }22 IixT i ∈=  be the base for ( )AF  and { }33 IiyT i ∈=  be the base for ( )AD . 

In this situation the corresponding systems 2R  and 3R  of triangular relations are empty sets. Therefore we 

denote 1R  by AR . Let us take another S-group ( ) ( ) ( )ADAFATA ′⊕′⊕′=′  with the respective bases { }11 IitT i ′∈′=′ , 

{ }22 IixT i ′∈′=′ , { }33 IiyT i ′∈′=′  and the corresponding system of triangular relations AR ′ . 

Our main task in this paper is to construct by means of the above bases and triangular relations the base and the 

system of triangular relations for the tensor product AA ′⊗ . 

Using Theorem 2.3 and the properties of tensor products, it is not difficult to prove that AA ′⊗  is a S-group and 

the following natural isomorphisms are valid: 

 ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]AFATAFATATATAAT ⊗′⊕′⊗⊕′⊗≅′⊗ , (3.1) 

 ( ) ( ) ( )AFAFAAF ′⊗≅′⊗ , (3.2) 

 ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]ADADADAFADAFAAD ′⊗⊕⊗′⊕′⊗=′⊗ . (3.3) 

Let us calculate the bases for ( )AAF ′⊗  and ( )AAD ′⊗ . The above-mentioned properties of tensor products 

immediately imply that 

( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }.,;,;,|

,,|

3332323

222

IIjiyyIIjiyxIijiyxT

IijixxT

jijiji

ji

′×∈′⊗×′∈⊗′′×∈′⊗=

′×∈′⊗=
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Thus it remains to find the base and the system of triangular relations for the group ( )AAT ′⊗ . Since the latter 

group consists of three summands, we need to find the base and the system of triangular relations for each summand 
individually. Let us begin with the group ( ) ( )ATAT ′⊗ . By Theorem 2.1 we have 

 ( ) ( ) ( )pp
p

BBATAT ′⊗⊕≅′⊗ , 

where pB  and pB′  are the respective base subgroups in p-primary components. pp BB ′⊗  is a direct sum of cyclic 

groups. If pT  and pT ′  are the bases of the groups pB  and pB′ , respectively, then the base for pp BB ′⊗  is pp TT ′⊗ , 

while the triangular representation of the group pp BB ′⊗  consists of ( ) 0=⊗ mst , where pTt ∈ , pTs ′∈  and 

( ) ( )( )sotom , g.c.d.=  – greatest common divisor. 

Two other summands are symmetrical. Therefore it is sufficient to find the base and the corresponding system of 
triangular relations for one of them, say, for ( ) ( )AFAT ′⊗ . Since ( )AF ′  is a free Abelian group with the base 

{ }22 IixT i ′∈′=′ , we have 

( ) ( ) ( )( ) ( )( )i
Ii

i
Ii

ATxATAFAT
22 ′∈′∈

⊕≅′⊗⊕≅′⊗ , 

where ( )( ) ( )ATAT i ≅ , 2Ii ′∈ . 

But the base and the corresponding system of triangular relations for the group ( )AT  are known. We recall that 

they are parts of the corresponding sets for the group A. Therefore the construction of the base and the corresponding 

system of triangular relations for the group AA ′⊗  is completed. 

 

4. Triangular Representations of Torsion-Free Abelian Groups 

4.1 The case of reduced groups. Let A be a torsion-free Abelian group. Then 

 dred AAA ⊕≅ . (4.1) 

If A′  is another torsion-free Abelian group, then 

 ( ) redredred AAAA ′⊗≅′⊗ , (4.2) 

 ( ) ( ) ( ) ( )dddreddredd AAAAAAAA ′⊗⊕⊗′⊕′⊗≅′⊗ . (4.3) 

Since the divisible part is a vector space over Θ, its Maltsev base can be immediately calculated by maximal, 
linearly independent systems of elements of the groups redA , redA′  and the bases of the groups dA , dA′  (this is a 

tensor product of the respective bases for the multipliers in formula (9)). In this case, the triangular system of 

relations is empty. Therefore it is sufficient to construct the triangular system of relations only for the reduced 

torsion-free groups A and A′ . 

4.2 The case of Abelian groups decomposed into a direct sum of groups of rank 1. Let 

 i
Ii

i
Ii

BABA ′⊕=′⊕=
′∈∈

, , 

where iB  and iB′  are groups of rank 1. Then the tensor product AA ′⊗  takes the form  

 ( )ji
ji

BBAA ⊗⊕≅′⊗
,

. 

In that case, by virtue of 4.1, the construction of the system of triangular relations of the tensor product AA ′⊗  

reduces to the construction of the system of triangular relations for the tensor products of groups of rank 1. So, let A 

and A′  be groups of rank 1. We choose the nonzero elements a, a′  in the groups A, A′ , respectively, and denote by 
( )aχ , ( )a′χ  the characteristics of the elements a, a′ . On the set { }∞UN  we define the operation of addition as 

follows: as addition of natural numbers for elements from Ν, and ∞=+∞=∞+ nn  and ∞=∞+∞ . Then, by the 

property of tensor products, for the heights of elements (see Section 2) the following formula is valid: 

 ( ) ( ) ( )ahahaah ppp ′+≥′⊗ , 

which in the case of torsion-free Abelian groups becomes an equality. 
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Therefore 

 ( ) ( ) ( )aaaa ′+=′⊗ χχχ , 

where addition is performed componentwise. Also, if the characteristic ( )aa ′⊗χ  consists entirely of infinity, then 

≅′⊗ AA  and for it the triangular system of relations is empty. Otherwise we denote by 0A  the group generated by 

the tensor aa ′⊗ . Then the factor group ( ) ( )aaAA ′⊗′⊗  is a periodic group. Its primary p-component is a cyclic 

group of order kp  if ( ) kaahp =′⊗ , and is a quasicyclic group if ( ) ∞=′⊗ aahp . In Subsection 4.1 it is explained 

how in that case we can construct the base for the group AA ′⊗  and the corresponding systems of triangular 

relations. 

4.3. The general case. Let us first consider a subcase where A is an arbitrary reduced group, and A′  is a reduced 
group of rank 1. We choose in the group A a maximal, linearly independent system { }IixM i ∈=  and perform the 

complete ordering of the set of indices I. Let 1A  denote the serving closure of the element 1x  in A. Then 1A  is a 

group of rank 1, and the factor group 1AA  is torsion-free. Then, by virtue of Theorem 2.1, the following exact 

sequence is valid: 

00 11 ⎯→⎯′⊗⎯→⎯′⊗⎯→⎯′⊗⎯→⎯ AAAAAAA . 

The system of triangular relations for AA ′⊗1  has already been found since they both are groups of rank 1. By 

virtue of Proposition 1.5, to construct the system of triangular relations it is sufficient to find the corresponding 
system of triangular relations for the group AAA ′⊗1 . Further we use transfinite induction with respect to the 

ordinal type ρ  of the set of indices I. Let us perform one more step of this induction. Denote the factor group 1AA  

by A , and K,, 32 xx  the images of the respective elements from M. 

Let { }K,, 32 xxM =  and 1A  be the serving closure of an element 2x  in A . Applying Theorem 2.2 to the pair of 

groups 1A , A , we construct the system of triangular relations for the group AA ′⊗1 . Now the problem of 

construction of the base reduces to the problem of construction for the group AAA ′⊗1 . Transfinite induction 

completes the proof. 

Now let us consider the general case where the groups A and A′  are not groups of rank 1. We choose a maximal, 
linearly independent system { }IixM i ′∈′=′  and perform a complete ordering of the set I ′ . Denote by 1A′  the 

serving closure of the element 1x′ . Then by virtue of Theorem 2.1 we have 

 00 11 ⎯→⎯′′⊗⎯→⎯′⊗⎯→⎯′⊗⎯→⎯ AAAAAAA . 

Since 1A′  is a group of rank 1, the triangular system of relations has already been constructed for it in Subsection 

4.2. Therefore it is sufficient to construct the triangular system of relations for the group 1AAA ′′⊗ . For this we use 

induction with respect to the ordinal type of the set of indices 1I ′ . 

4.4. The tensor product of arbitrary Abelian groups. Let A and A′  be arbitrary Abelian groups. Then by 

Theorem 3.3 we have 

 ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]ATATAATAATATATAAT ′⊗⊕′′⊗⊕′⊗≅′⊗ .  (4.4) 

We have already constructed the system of triangular relations for the group ( ) ( )ATAATA ′′⊗ . Therefore it is 

sufficient to construct such a system for the group ( )AAT ′⊗ . By virtue of isomorphism (4.4) it suffices to construct 

the system of triangular relations for the tensor product of the groups ( ) ( )ATAT ′⊗ , ( ) ( )ATAAT ′′⊗ , 

( ) ( )ATATA ′⊗ . Since periodic groups are S-groups, the triangular system of relations of the group ( ) ( )ATAT ′⊗  

has already been constructed in Subsection 4.3. Since the last two groups are symmetrical, it is sufficient to construct 
the system of triangular relations for one of them, say, for ( ) ( )ATAAT ′′⊗ . By Theorem 2.2 a p-primary component 

is isomorphic to the group ( ) pp BAT ⊗ , where pB  is a p-base subgroup ( )ATA ′′ . Since ( )pAT  and pB  are S-

groups, we have already constructed the system of triangular relations for them in Subsection 4.3. 
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